期刊文献+

蛛丝蛋白MiSp重组模块R1R2CT表达及其纤维化动力学研究 被引量:1

Recombinant Expression and Fibrillisation Analysis of MiSp R1R2CT Module
下载PDF
导出
摘要 为探索蛛丝蛋白模块单元在成丝过程中的作用,研究了大腹园蛛MiSpR1R2CT功能模块在不同pH条件下的纤维化动力学特性。大腹园蛛MiSp蛋白的R1R2CT功能模块与硫氧还蛋白融合,并在BL21(DE3)中进行表达,表达量约为15mg/LLB培养基。R1R2CT蛋白在pH7.5和6.5时较为稳定,在22h之内不发生纤维化;当pH值降至5.5时,R1R2CT在前2h内快速纤维化,3~5h趋势较为平缓;5h之后R1R2CT蛋白再次出现ThT信号的快速增长,7h后保持缓慢增长至22h。R1R2CT的增长速率及幅度高于单独的CT(C-termi-nal)蛋白,而单独的R1R2在pH7.5、6.5和5.5时均保持稳定,表明重复区依赖CT模块的快速纤维化模式。已有研究表明,CT在重复区纤维化过程中起晶核作用,该成果也从反面证实CT的晶核理论。 Fibrillisation dynamics under different pHs were analyzed for determination of the functions of spider silk protein modules in silk formation process. According to the complete MiSp gene sequence, RIR2CT fused with thioredoxin was expressed successfully via gene recombinant technology in BL21 (DE3), which resulted in a fusion protein as thioredoxin-thrombin cleavage site-R1R2CT. The expression level of recombinant proteins is about 15 mg/L LB medium. R1R2CT maintains soluble conformation and no positive ThT signals were detected under pH 7.5 and 6.5. Enhanced ThT signals were collected when pH decreased to 5.5, and dur- ing the following 3-5 h increased much more smoothly. After the first five hours, second swiftly sharp ThT sig- nals appeared, and maintained to seven hours, after which the second relatively smooth increasement of ThT signals lasted all over the measurement time. The rate and latitude of R1R2CT ThT signal was higher than that of CT alone, and under pH 7.5, 6.5 and 5.5 no positive ThT signals were detected for R1R2 proteins indicated a quick fibrillisation process of R1R2 dependent on CT, and also CT is an essential part for spider silk forma- tion. The fibrillation of RIR2CT to some extent supports the nucleation theory in some other light.
出处 《生命科学研究》 CAS CSCD 2015年第5期410-414,共5页 Life Science Research
基金 国家自然科学基金项目(31070698) 教育部博士点基金项目(20120075110007) 教育部高校特色项目(TS2011DHDX025) 上海市科委攻关项目(14521100700) 上海市科委国际合作项目(14520720200) 国家外专局"高端外国专家项目"(GDW20143100069 GDW20143100070 GDW20143100071)
关键词 次壶腹腺蛋白 功能模块 硫磺素T(ThT) 晶核 minor ampullate silk module thioflavine T (ThT) nucleation
  • 相关文献

参考文献23

  • 1LINKE W A.Biomaterials:spider strength and stretchability[J].Nature Chemical Biology,2010,6(10):702-703.
  • 2SPIESS K,LAMMEL A,SCHEIBEL T.Recombinant spider silk proteins for applications in biomaterials[J].Macromolecular Bioscience,2010,10(9):998-1007.
  • 3SLOTTA U,HESS S,SPIESS K,et al.Spider silk and amyloid fibrils:a structural comparison[J].Macromolecular Bioscience,2007,7(2):183-188.
  • 4RISING A.Controlled assembly:a prerequisite for the use of recombinant spider silk in regenerative medicine?[J].Acta Biomaterialia,2014,10(4):1627-1631.
  • 5CHUNG H,KIM T Y,LEES Y.Recent advances in production of recombinant spider silk proteins[J].Current Opinion in Biotechnology,2012,23(6):957-964.
  • 6WIDHE M,JOHANSSON J,HEDHAMMAR M,et al.Current progress and limitations of spider silk for biomedical applications[J].Biopolymers,2012,97(6):468-478.
  • 7AYOUB N A,GARB J E,TINGHITELLA R M,et al.Blueprint for a high-performance biomaterial:full-length spider dragline silk genes[J].PLo S One,2007,2(6):e514.
  • 8CHEN G,LIU X,ZHANG Y,et al.Full-length minor ampullate spidroin gene sequence[J].PLo S One,2012,7(12):e52293.
  • 9AYOUB N A,GARB J E,KUELBS A,et al.Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein(Ac Sp1)[J].Molecular Biology and Evolution,2013,30(3):589-601.
  • 10EISOLDT L,THAMM C,SCHEIBEL T.Review the role of terminal domains during storage and assembly of spider silk proteins[J].Biopolymers,2012,97(6):355-361.

二级参考文献36

  • 1KlugeJ A, Rabotyagova 0, Leisk G G, et al. Spider silks and tbeir applications[J]. Trends Biotecbnol, 2008, 26 ( 5 ) : 244- 251.
  • 2Lewis R V. Spider silk: ancient ideas for new biomaterials[J] . Cbem Rev, 2006, 106 (9) : 3762-3774.
  • 3Widhe M,Johansson U, Hillerdahl CO, et al. Recombinant spider silk witb cell binding motifs for specific adherevnce of cells[J]. Biomaterials , 2013, 34(33): 8223-8234.
  • 4Woblrab S, Muller S, Schmidt A, et al. Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins[J]. Biomaterials , 2012, 33 (28) : 6650-6659.
  • 5Lewicka M, Hermanson 0, Rising AU. Recombinant spider silk matrices for neural stem cell cultures[J]. Biomaterials, 2012, 33(31) : 7712-7717.
  • 6Huang W, Begum R, Barber T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats[J] . Biomaterials, 2012,33(1) : 59-71.
  • 7Hofer M, Winter G, MyschikJ. Recombinant spider silk particles for controlled delivery of protein drugs[J]. Biomaterials, 2012, 33(5): 1554-1562.
  • 8Ayoub N A, GarbJ E, Tinghitella R M, et al, Blueprint for a high-performance biomaterial: full-length spider dragline silk genes[J]. PLoS One, 2007 , 2 ( 6) : e514.
  • 9Han L, Zhang L, Zhao T, et al. Analysis of a new type of major ampullate spider silk gene, MaSpl s[J]. IntJ Bioi Macromol, 2013, 56: 156-161.
  • 10Ayoub N A, GarbJ E, Kuelbs A, et al. Ancient properties of spider silks revealed by the complete gene sequence of the prey?wrapping silk protein (AcSpl)[J]. Mol Bioi Evol, 2013, 30 (3) : 589-601.

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部