摘要
以环氧氯丙烷和浓盐酸为原料通过开环反应制备中间产物1,3-二氯-2-丙醇,将该产物与叔丁胺通过亲核取代反应合成可用于气体脱硫的位阻胺1,3-二叔丁胺基-2-丙醇(DTBP),并用红外谱图(IR)及核磁共振氢谱(1H NMR)对其进行了结构表征。采用单因素变量法对反应条件进行优化,研究表明,以100%无水乙醇为反应介质,当1,3-二氯-2-丙醇与叔丁胺的摩尔比为1∶3,反应温度为140℃,反应时间为3h时,所制得的DTBP产率最高,为92.3%。脱硫性能测试结果表明:在相同的实验条件下,DTBP溶液的H2S脱除率及吸收选择性均优于N-甲基二乙醇胺(MDEA)溶液。
With epoxy chloropropane and concentrated hydrochloric acid as raw material,the intermediate product 1,3-dichloro-2-propanol was prepared by ring opening action. A novel sterically hindered amine 1,3-di-tert-butylamine-2-propanol (DTBP),which can be used for gas desulfurization, has been synthesized by nudeophilic substitution between 1,3-dichloro-2-propanol and tert-butylamine,and then the chemical structure of this desulfurizer was demonstrated by IR and1H NMR. The reaction conditions were optimized by the method of single factor variable,and the study showed that with the 100% anhydrous ethanol as reaction medium,when the molar ratio between 1,3-dichloro-2-propanol andtert-butylamine was 1:3,the reaction temperature was 140℃,and the reacting time was 3 hours,the yield of DBTP was 92.3%,which was the maximum. The laboratory desulfurization performance test indicated that the capacity of H2S absorption and the absorption selectivity of DTBP solution were higher than those of MDEA under the same reaction conditions.
出处
《化工进展》
EI
CAS
CSCD
北大核心
2015年第9期3291-3295,3302,共6页
Chemical Industry and Engineering Progress
关键词
位阻胺
选择性脱硫
合成
优化
评价
sterically hindered amine
selective desulfuration
synthesis
optimization
evaluation