期刊文献+

气体动理学统一算法的隐式方法研究 被引量:5

STUDY ON IMPLICIT IMPLEMENTATION OF THE UNIFIED GAS KINETIC SCHEME
下载PDF
导出
摘要 目前的气体动理学统一算法(unified gas kinetic scheme,简称UGKS)在求解高速流动问题时的计算效率,难以满足求解复杂工程问题的需求.为了提高该算法的计算效率,本文对模型方程的对流项和碰撞项进行了隐式处理,并针对UGKS界面通量与演化时间相关的特点,引入了演化时间平均界面通量,通过对控制方程矩阵进行近似LU分解(lower-upper decomposition),实现了隐式UGKS.不同来流马赫数的圆柱绕流算例测试表明,只要演化时间选取得当,隐式方法可以得到与显式方法完全相同的结果,且计算效率可以提高1~2个量级. The current explicit unified gas kinetic scheme (UGKS) is very time-consuming for high speed flows due to the massive phase space mesh demand, which is a bottleneck for complex engineering problems. In order to improve the efficiency, the motion and collision term in the model equation is implicitly treated and the evolving time averaged flux across the cell interface is introduced, then the implicit UGKS can be obtained applying the approximate LU decompo- sition on the matrix of the governing equations. The tests on the flows over a cylinder with different freestream Mach numbers show that the implicit method can give the same result as the original explicit method with a properly chosen evolving time step, Meanwhile, the computational efficiency can be improved by 1-2 orders.
出处 《力学学报》 EI CSCD 北大核心 2015年第5期822-829,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11402287) 空气动力学国家重点实验室研究基金(SKLA2015-1-2)资助项目~~
关键词 气体动理学统一算法 隐式方法 加速收敛 unified gas kinetic scheme, implicit method, convergence acceleration
  • 相关文献

参考文献24

  • 1Yu PB. A unied gas kinetic scheme for all knudsen number flows. [PhD Thesis], Hong Kong:The Hong Kong University of Science and Technology,2013.
  • 2Chen SZ, Xu K, Lee CB, et al. A unified gas kinetic scheme with moving mesh and velocity space adaptation. Journal of Computational Physics, 2012, 231(20): 6643-6664. [J].
  • 3Arslanbekov RR, Kolobov VI, Kolobov AA. Kinetic solvers with adaptive mesh in phase space, In: Abe T, Ed. Rarefied Gas Dynamics, Melville, 2012, Amer Inst Physics, 2012, 294-301.
  • 4Baranger C, Claudel J, Claudel N, et al. Locally refined discrete velocity grids for deterministic rarefied flow simulations, In: Abe T, Ed. Rarefied Gas Dynamics, Melville, 2012, Amer Inst Physics, 2012, 389-396.
  • 5Yoon S, Jameson A. Lower upper symmetric Gauss Seidel method for the Euler and Navier-Stokes equations. AIAA Journal, 1988, 26(efeq9): 1025-1026.
  • 6Yang JY, Huang JC. Rarefied flow computations using nonlinear model Boltzmann equations. Journal of Computational Physics, 1995, 120(efeq2): 323-339.
  • 7王强,程晓丽,庄逢甘.基于简化Boltzmann方程的超声速流稀薄效应分析[J].航空学报,2005,26(3):281-285. 被引量:2
  • 8王强,程晓丽,庄逢甘.稀薄流非线性模型方程离散速度坐标法有限差分解[J].计算力学学报,2006,23(2):235-241. 被引量:2
  • 9Titarev VA. Efficient deterministic modelling of three-dimensional rarefied gas flows. Communications in Computational Physics, 2012, 12(1):162-192.
  • 10Titarev VA, Dumbser M, Utyuzhnikov S. Construction and compar- ison of parallel implicit kinetic solvers in three spatial dimensions. Journal of Computational Physics, 2014, 256: 17-33.

二级参考文献46

  • 1RAMESH K. AGARWAL, etc.. Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime [ J ].Phys. Fluids ,2001,13(10) :3061-3085.
  • 2YANG J Y and HUANG J C. Rarefied flow computations using nolinear model Boltzmann equations [J]. J. Comput. Phys.,1995,120: 323-339.
  • 3KUN XU.A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. J. Compt. Phys .2001,171:289-335.
  • 4GRAUR, etc.. Comparison of kinetic and continuum approaches for simulation of shock wave/boundary layer interaction [J].Shock Waves ,2003,12:343-350.
  • 5MASLACH G J and SCHAAF S A.Cylinder drag in the transition from continuum to free-molecule flow [ J ]. Phys. Fluid,1963,3(3) :315-321.
  • 6KUN XU.Regularization of the Chpman-Enskog expansion and its description of shock structure [J]. Phys. Fluid,2002, 14(4): 17-20.
  • 7Boyd I D, Penko P F, Meissner D L, et al. Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen [J]. AIAA J, 1992, 30(10): 2453-2460.
  • 8Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equations [J]. J Comput Physics, 1995, 120: 323-339.
  • 9Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum [J]. J Comput Physics, 2004, 193: 708-738.
  • 10Aoki K, Kanba K, Takata S. Numerical analysis of a supersonic rarefied gas flow past a flat plate [J]. Phys Fluids, 1997, 9(4): 1144-1161.

共引文献16

同被引文献26

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部