期刊文献+

Microstructure and Mechanical Properties of 45 vol.%SiC_p/7075Al Composite 被引量:7

Microstructure and Mechanical Properties of 45 vol.%SiC_p/7075Al Composite
原文传递
导出
摘要 Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltration method. High density dislocations were found around SiC/Al interface in SiCp/7075Al composite after water-quenching and aging treatment. Fine dispersed nano-η' phases were observed after the aging treatment. Adverse to other SiCp/Al composites prepared by the pressure infiltration method, an interface layer was observed between SiC particles and AI matrix. Furthermore, high-resolution trans- mission electron microscopy (HRTEM) observation indicated that this interface layer was coherent/semi- coherent with that of the SiC particles. 45 vol.% SiCp/7075Al composite demonstrated high tensile strength (630 MPa) and micro-ductility. Compared to aged SiCp/2024Al composite, the aged SiCp/7075Al com- posite showed an increase of about 200% in the tensile strain and 90% in the tensile strength, respectively. It is speculated that nano-η' phases in the Al matrix significantly contributed to the strengthening effect while the interface layer between SiC and AI matrix might be beneficial to the strength and plasticity of SiCp/7075Al composite. Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltration method. High density dislocations were found around SiC/Al interface in SiCp/7075Al composite after water-quenching and aging treatment. Fine dispersed nano-η' phases were observed after the aging treatment. Adverse to other SiCp/Al composites prepared by the pressure infiltration method, an interface layer was observed between SiC particles and AI matrix. Furthermore, high-resolution trans- mission electron microscopy (HRTEM) observation indicated that this interface layer was coherent/semi- coherent with that of the SiC particles. 45 vol.% SiCp/7075Al composite demonstrated high tensile strength (630 MPa) and micro-ductility. Compared to aged SiCp/2024Al composite, the aged SiCp/7075Al com- posite showed an increase of about 200% in the tensile strain and 90% in the tensile strength, respectively. It is speculated that nano-η' phases in the Al matrix significantly contributed to the strengthening effect while the interface layer between SiC and AI matrix might be beneficial to the strength and plasticity of SiCp/7075Al composite.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第9期930-934,共5页 材料科学技术(英文版)
基金 the financial support of the project from "Key Laboratory Fund (5780011513) of Harbin Institute of Technology" "University Basic Fund (5710011113) of Harbin Institute of Technology" "the Fundamental Research Funds for the Central Universities" (Grant No. HIT. NSRIF. 20161)
关键词 Metal matrix composite7075Al InterfaceNano precipitationMechanical properties Metal matrix composite7075Al InterfaceNano precipitationMechanical properties
  • 相关文献

参考文献1

同被引文献76

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部