期刊文献+

有理Haar小波求解非线性分数阶Fredholm积分微分方程

Rationalized Haar Wavelet Method for Solving Nonlinear Fractional Fredholm Integro-Differential Equation
下载PDF
导出
摘要 利用有理Haar小波的分数阶积分算子矩阵,提出一种求解非线性分数阶Fredholm积分微分方程的数值算法,并通过数值实验验证了所提算法的精确性和有效性. Based on the rationalized Haar wavelet operational matrix of fractional integration,a numerical method was presented for solving nonlinear fractional Fredholm integro-differential equation.And numerical experiments verify the accuracy and validity of the proposed algorithm.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期868-872,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11261041 11261045)
关键词 有理Haar小波 Fredholm积分微分方程 分数阶微积分 rationalized Haar wavelet Fredholm integro-differential equation fractional calculus
  • 相关文献

参考文献12

  • 1Goedecker S. Wavelets and Their Application for the Solution of Poisson's and Schrodinger ' s Equation[J]. Multiscale Simulation Methods in Molecular Sciences, 2009, 42: 507-534.
  • 2Rehman M, Khan R A. The Legendre Wavelet Method for Solving Fractional Differential Equations[J]. Commun Nonlinear Sci Numer Simul , 2011, 16(11): 4163-4173.
  • 3J afari H, Yousefi SA, Firoozjaee M A, et al. Application of Legendre Wavelets for Solving Fractional Differential Equations[j]. Comput Math Appl , 2011, 62(3): 1038-1045.
  • 4LI Yuanlu. Solving a Nonlinear Fractional Differential Equation Using Chebyshev Wavelets[J]. Commun Nonlinear Sci Numer Sirnul , 2010, 15(9): 2284-2292.
  • 5Saeedi H, Moghadam M M, Mollahasani N, et al. A CAS Wavelet Method for Solving Nonlinear Fredholm IntegraDifferential Equations of Fractional Order[J]. Commun Nonlinear Sci Numer Simul , 2011, 16(3): 1154-1163.
  • 6ZHU Li , FAN Qibin. Solving Fractional Nonlinear Fredholm Integra-Differential Equations by the Second Kind Chebyshev Wavelet[J]. Commun Nonlinear Sci Numer Simul , 2012, 17(6): 2333-2341.
  • 7尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 8黄洁,韩惠丽.应用Legendre小波求解非线性分数阶Volterra积分微分方程[J].吉林大学学报(理学版),2014,52(4):655-660. 被引量:4
  • 9仪明旭,陈一鸣,魏金侠,刘玉风.应用Haar小波求解非线性分数阶Fredholm积分微分方程[J].河北师范大学学报(自然科学版),2012,36(5):452-455. 被引量:6
  • 10Ohkita M, Kobayashi Y. An Application of Rationalized Haar Functions to Solution of Linear Partial Differential Equations[J]. Math Comput Simulat , 1988, 30(5): 419-428.

二级参考文献36

  • 1尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 2李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2005.
  • 3陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 4PODLUBNY I. Fractional Differential Equations [M]. New York.. Academic Press, 1999.
  • 5ODIBAT Z. Approximations of Fractional Integrals and Caputo Fractional Derivatives[J]. Appl Math Comput, 2006,178: 527-533.
  • 6GORENFLO R,MAINARDI F. Time Fractional Diffusion.A Discrete Random Walk Approach [J]. Journal of Nonlinear Dynamics, 2000,29 : 129-143.
  • 7HUANG F,LIU F. The Fundamental Solution of the Space-time Fractional Advection Dispersion Equation[J], J Appl Math& Computing,2005,18(2) :339-350.
  • 8SAEEDI H. A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-differential Equation of Fractional Order [J]. Commun Nonlinear Sci Numer Simulat,2011,16:1154-1163.
  • 9LI Yuanlu, SUN Ning. Numerical Solution of Fractional Differential Equations Using the Generalized Block Pulse Operational Matrix [J]. Computers and Mathematics with Applications, 2011,62 : 1046-1054.
  • 10Nawaz Y. Variational Iteration Method and Homotopy Perturbation Method for Fourth-Order Fractional Integro- Differential Equations [J]. Comput Math Appl, 2011, 61(8) : 2330-2341.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部