摘要
利用能量估计的方法考虑一类Boussinesq方程组的初边值问题,研究当扩散系数ε→0时的边界层效应和收敛率,给出了边界层厚度的阶数O(εβ)(0<β<2/3).结果表明,与现有方法相比所得到的边界层厚度更薄,并且提高了收敛率.
We considered an initial-value problem for a class of Boussinesq equations using the energy estimate method.We mainly studied the boundary layer effect and the convergence rate as the thermal diffusion parameterε→0,giving that the boundary layer thickness is of the order O(ε^β)with0〈β〈2/3.Compared with the existing methods,the present method presented more thinner BL-thickness.In addition,the convergence rate was also improved.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第5期930-933,共4页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11271153)
高等学校博士学科点专项科研基金(批准号:20140101-20161231)
吉林省科技发展计划项目(批准号:20150101002JC)
东北电力大学博士科研启动基金(批准号:BSJXM-201331)
关键词
边界层
边界层厚度
收敛率
消失扩散极限
boundary layer
BL-thickness
convergence rates
vanishing diffusivity limit