期刊文献+

一类Boussinesq方程组消失扩散极限的边界层

Boundary Layer of Vanishing Diffusivity Limit for a Class of Boussinesq Equations
下载PDF
导出
摘要 利用能量估计的方法考虑一类Boussinesq方程组的初边值问题,研究当扩散系数ε→0时的边界层效应和收敛率,给出了边界层厚度的阶数O(εβ)(0<β<2/3).结果表明,与现有方法相比所得到的边界层厚度更薄,并且提高了收敛率. We considered an initial-value problem for a class of Boussinesq equations using the energy estimate method.We mainly studied the boundary layer effect and the convergence rate as the thermal diffusion parameterε→0,giving that the boundary layer thickness is of the order O(ε^β)with0〈β〈2/3.Compared with the existing methods,the present method presented more thinner BL-thickness.In addition,the convergence rate was also improved.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期930-933,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11271153) 高等学校博士学科点专项科研基金(批准号:20140101-20161231) 吉林省科技发展计划项目(批准号:20150101002JC) 东北电力大学博士科研启动基金(批准号:BSJXM-201331)
关键词 边界层 边界层厚度 收敛率 消失扩散极限 boundary layer BL-thickness convergence rates vanishing diffusivity limit
  • 相关文献

参考文献9

  • 1JIANG Song. ZHANG Iianwen , ZHAOJunning. Boundary-Layer Effects for the 2-D Boussinesq Equations with Vanishing Diffusivity Limit in the Half Plane[J].J Diff Equa. 2011. 250(0): 3907-3936.
  • 2Chae D. Global Regularity for th' 20 Boussinesq Equations with Partial Viscosity Terms[J]. Adv Math. 2006. 203(2): 497-513.
  • 3Hou T Y.LI Congming. Global Well-Posedness of the Viscous Boussinesq Equations[J]. Discrete Cantin Dyn Syst , 2005. 12(1): 1-12.
  • 4LI Huapeng , PAN Ronghua , ZHANG Weizhe. Initial Boundary Value Problem for 20 Boussinesq Equations with Temperature-Dependent Heat Diffusion[J].Journal of Hyperbolic Differential Equations. 2013-08. http:// people. math. gatech. edu/ panrh/publications/Fluiddynamics/Li-Pan-Zhang-v2. pdf.
  • 5JIANG Song. ZHANGJianwen. On the Vanishing Resistivity Limit and the Magnetic Boundary-Layer for OneDimensional Compressible Magnetohydrodynamics[J]. 2015-05-14. http: / / arxiv. org/ pdf/1505. 03596vl. pdf.
  • 6CHEN Ming tao , XU Xinying , ZHANGJianwen. The Zero Limits of Angular and Micro-rotational Viscosities for the Two-Dimensional Micropolar Fluid Equations with Boundary Effects[J]. Z Angew Math Phys , 2014. 65 (4) : 687-710.
  • 7Y AO Lei. ZHANG Ting , ZHU Changjiang. Boundary Layers for Compresible Navier-Stokes Equations with Density-Dependent Viscosity and Cylindrical Symmetry[J]. Ann Inst H Poincare Anal Non Lineair e , 2011. 28(5): 677-709.
  • 8PENG Hongyun , RUAN Lizhi , XIANGJianlin. A Note on Boundary Layer of a Nonlinear Evolution System with Damping and Diffusions[J].J Math Anal Appl , 2015. 426(2): 1099-1129.
  • 9RUAN Lizhi , ZHU Changjiang. Boundary Layer for Nonlinear Evolution Equations with Damping and Diffusion[J]. Discrete Contin Dyn Syst , Ser A. 2012. 32(1): 331-352.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部