期刊文献+

动态在线Map/Reduce流数据处理模型及作业拓扑管理协议

Dynamic Online Map/Reduce Stream Processing Model and Topology Management Protocol
下载PDF
导出
摘要 针对海量流数据的在线处理需求,提出一种不同于传统Map/Reduce流数据处理的系统模型Flexible workflow.该模型对workflow处理单元进行在线Map/Reduce并行化,实现了SPATE系统;同时为该系统定义一组关于作业的建立、管理和维护的通信规程,即拓扑管理协议.SPATE系统解决了在线Map/Reduce流数据处理过程中要求实时性及可扩展性的问题.实验验证了拓扑管理协议的有效性,拓扑管理协议能有效管理Flexible workflow流数据处理模型. To meet the requirements for online processing massive stream data,the authors proposed a novel system model,Flexible workflow,which is different from the traditional Map/Reduce stream data processing.This model conducts the online Map/Reduce parallelization of the process unit of workflow and executes a system of SPATE.A set of topology management protocol was designed for dynamic online Map/Reduce stream data processing model.The protocol includes a group of communication rules about setting up,managing and maintaining jobs.The experimental results validate the topology management protocol is effective,and can manage the Flexible workflow processing model availably.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期950-955,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61170004) 深部探测技术与实验研究专项基金(批准号:SinoProbe-09-01) 教育部高等学校博士学科点专项科研基金(批准号:20130061110052) 吉林省科技发展计划重点科技攻关项目(批准号:20140204013GX) 吉林大学基本科研经费项目(批准号:450060491439)
关键词 流数据处理 FLEXIBLE workflow模型 MAP/REDUCE 拓扑管理 steam processing Flexible workflow model Map/Reduce topology management
  • 相关文献

参考文献12

  • 1Apache, Hadoop[EB/OL].[2015-07-07]. http://hadoop. apache. org/.
  • 2Isard M, Budiy M, YU Yuan, et al. Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks[J]. Proceedings of ACM SIGOPS Operating Systems Review, 2007. 41(3): 59-72.
  • 3Lam W, LIU Lu , Prasad S T S, et al. Muppet , Map/Reduce-Style Processing of Fast Data[J]. Proceedings of the VLDB Endowment. 2012. 5(12): 1814-1825.
  • 4Neumeyer L, Robbins B. Nair A. et al. S4: Distributed Stream Computing Platform[C]/ /Proceedings of IEEE International Conference on Data Mining Workshops. Washington DC: IEEE. 2010: 170-177.
  • 5Marz N. Storm-Distributed and Fault-Tolerant Realtime Computation[C/OL].[2014-03-23]. http://stormproj ect, net/.
  • 6Condie T. Conway N. Alvaro P. et al. Map/Reduce Online[C]/ /Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX. 2010: 21.
  • 7Shinnar A. Cunningham D. Herta B. et al. M3R: Increased Performance for In-Memory HadoopJobs[J]. Proceedings of the VLDB Endowment. 2012. 5(12): 1736-1747.
  • 8Backman N. Pattabiraman K. Fonseca R. et al. C-MR: Continuously Executing Map/Reduce Workflows on Multi-core Processors[C]/ /Proceedings of 3rd International Workshop on Map/Reduce and Its Applications Data. New York: ACM. 2012: 1-8.
  • 9Brito A. Martin A. Knauth T. et al. Scalable and Low-Latency Data Processing with Stream Map/Reduce[c]/ / 2011 IEEE Third International Conference on Cloud Computing Technology and Science (Cloud'Com). Piscataway: IEEE. 2011: 48-58.
  • 10Dean J, Ghemawat S. Map/Reduce: Simplified Data Processing on Large Clusters[J]. Commun ACM. 2008. 51(1): 107-113.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部