期刊文献+

在线增量标签主题模型 被引量:1

On-Line Incremental Labeled Topic Model
下载PDF
导出
摘要 将文本之间存在的时序关联性元信息和文档的标签信息,引入到隐藏Dirichlet分配模型中,提出一种在线增量标签主题(on-line labeled incremental topic model,OLT)模型.首先,在线增量标签主题模型优化了文本标签元信息与主题之间的映射关系;其次,利用动态字典增加了模型与文本的拟合程度.该模型优化了先验分布超参数迁移计算的连续性,解决了隐藏Dirichlet分配(LDA)模型不能利用文本属性与主题之间的相关性进行主题发现及演变分析的问题.实验结果表明,所提出的在线增量标签主题模型能显著改善多标签判别精度,提高模型的泛化能力并提升模型的运行性能. Based on the introduction of the features of time series and labels of the document into latent Dirichlet allocation(LDA)model,an on-line labeled incremental topic model was presented.Firstly,on-line labeled incremental topic model realizes the predicate of multi-labels on the basis of the optimized label and topic mapping relation and improves the clustering results.Secondly,the on-line labeled incremental topic model achieves the reasonable correlation of text streams with the help of dynamic dictionary and the optimization calculation of hyper-parameter.The experimental results suggest on-line labeled incremental topic model can improve the decision accuracy of multi-labels,optimizing the generalization ability and operating efficiency.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期992-998,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60373099 60973040 61303131) 福建省高校杰出青年科研人才培育计划项目(批准号:JA13196)
关键词 信息处理 隐藏Dirichlet分配(LDA)模型 自然语言处理 主题模型 information processing latent Dirichlet allocation(LDA)model natural language analysis topic model
  • 相关文献

参考文献13

  • 1Nigam K, LaffertyJ, McCallum A. Using Maximum Entropy for Text Classification[C]/ /UCAI-99 Workshop on Machine Learning for Information Filtering. Chicago:[so n.J, 1999: 61-67.
  • 2Newman D, Asuncion A, Smyth P, et al. Distributed Inference for Latent Dirichlet Allocation[C]/ /Neural Information Processing Systems 2007. Cambridge: MIT, 2007: 80-88.
  • 3Blei D M, Ng A v,Jordan M 1. Latent Dirichlet Allocation[J].Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 4Blei D M. Probabilistic Topic Models[J]. Communications of the ACM, 2012, 55(4): 77-84.
  • 5Blei D M, LaffertyJ D. Dynamic Topic Models[C]/ /Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 113-120.
  • 6WANG Chong, Blei D, Heckerman D. Continuous Time Dynamic Topic Models[C]/ /Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence. Finland: AU AI Press, 2008: 579-586.
  • 7WANG Xuerui, Topics Over Time: A Non-Markov Continuous-Time Model of Topical Trends[C]/ /Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 424-433.
  • 8胡艳丽,白亮,张维明.网络舆情中一种基于OLDA的在线话题演化方法[J].国防科技大学学报,2012,34(1):150-154. 被引量:29
  • 9Blei D M, MoAuliffeJ D. Supervised Topic Models[C]/ /Neural Information Processing System 2007. Cambridge: MIT, 2007: 21-30.
  • 10Ramage D, Hall D, Nallapati R, et al. Labeled LDA: A Supervised Topic Model for Credit Attribution in Multilabeled Corpora[C]/ /Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Associattion for Computational Linguistics, 2009: 248-256.

二级参考文献19

  • 1徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报(社会科学版),2007(1):89-93. 被引量:141
  • 2石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 3Allan J,Carbonell J,Doddington G,et a1.Topic detectionand tracking pilot study:final report[C]//DARPA BroadcastNews Transcription and Understanding Workshop,SanFrancisco,CA,Morgan Kaufmann Publishers Inc,1998:194-218.
  • 4The 2002 Topic Detection and Tracking(TDT2002)Taskdefinition and evaluation plan[EB/OL].[2011-03- 18].ftp://jaguar.ncsl.nist.gov/tdt/tdt2002/evalplans/TDT02.Eval.plan.v1.1.pdf.
  • 5Blei D M,Ng A Y,Jordan M I.Latent dirichletallocation[J].Journal of Machine Learning Research,2003(3):993-1022.
  • 6Wang X R,McCallum A.Topic over time:a non-Markovcontinuous-time model of topical trends[C]//Proceedings ofthe 12th ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining,Philadelphia,PA,USA,2006:424-433.
  • 7Blei D M,Lafferty J D.Dynamic topic model[C]//Proceedings of the 23rd International Conference on MachineLearning,Pittsburgh,Pennsylvania,2006:113-120.
  • 8Wang C,Blei D M,Heckerman D.Continuous time dynamictopic models[C]//Proceedings of the 24th AnnualConference on Uncertainty in Artificial Intelligence,Corvallis,Oregon,2008:579-586.
  • 9Nallapati R M,Cohen W,Ditmore S,et.al.Multi-scale topictomography[C]//Proceedings of the 13th ACM SIGKDDInternational Conference on Knowledge Discovery and DataMining,San Jose,California,USA,2007:520-529.
  • 10Wei X,Sun J,Wang X.Dynamic mixture models for multipletime series[C]//Proceedings of the 20th International JointConference on Artifical Intelligence,Hyderabad,India,2007:2909-2914.

共引文献28

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部