期刊文献+

内螺旋管金属氢化物反应器吸氢过程数值分析及优化 被引量:3

Numerical Analysis and Optimization of Metal Hydride Reactors Incorporating Helical Coils During Adsorption
下载PDF
导出
摘要 针对金属氢化物反应器传热性能较差的问题,采用田口方法对内置螺旋换热管的氢化物反应器进行了优化研究。建立金属氢化物反应器的3维多物理场耦合模型并采用COMSOL Multiphysics V4.4软件来求解。采用田口方法安排出具有代表性的螺旋结构参数组合,通过反应器模型计算得到各个组合的性能。结果表明:螺旋管的换热系数和换热面积都较大,因此内置螺旋管的氢化物反应器的性能较理想;随着螺旋数N和螺旋管直径do的增加,反应器的单位重量蓄热功率GHSR大大提高,而螺旋线直径D对反应器性能影响很小;最优的螺旋管参数组合为:D=32 mm、N=6和do=8 mm,相应的GHSR达到62.90 W/kg。 The heat transfer performance of metal hydride reactors is poor. To solve this problem,Taguehi methods was used to optimize the design parameters of metal hydride reactors equipped with helical coil heat exchanger. A three-dimensional multi-physics model for the metal hydride reactor was proposed and solved using the eommereial software package COMSOL Multiphysics V4.4. Some typical combinations of structural parameters for helical coil tubes were selected by using Taguehi methods, and the performanee of the reactors with different helical coil tubes was evaluated by numerical simulations based on the reactor model. The analysis results indicated that the performance of the metal hydride reactor equipped with the helieal coil heat exchanger was better because the heat transfer coefll- cient and the heat transfer area of the helical coil heat exchanger were larger in compared with the straight tube. As the pitch number of the helical coil (N) and the minor radius of the helical coil ( do ) increased,the gravimetric heat storage rate (GHSR) increased. How- ever,the major radius of the helical coil (D) had a little effect on the reactor performance. The optimal parameters of the reactor were D of 32 mm,N of 6 and do of 8 mm, and accordingly the maximum value of GHSR was 62.90 W/kg.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第5期185-190,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 中央高校基本科研业务费资助项目(2014SCU11022)
关键词 金属氢化物 反应器 螺旋换热管 田口方法 蓄热 metal hydride reactor helical coil heat exchanger Taguchi methods heat storage
  • 相关文献

参考文献18

  • 1向月,刘俊勇,冯瀚,张文涛,伍言,龚辉.偏远地区含分布式能源孤立微网经济配置研究[J].四川大学学报(工程科学版),2013,45(S2):175-181. 被引量:2
  • 2CorgnaleC,Hardy B,Motyka T,et al.Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants[J].Renewable and Sus- tainable Energy Reviews,2014,38:821-833.
  • 3YangF S,Wang G X,Zhang Z X,et al.Design of the.metal hydride reactdrs-A review on the key technical issues[J].International Joumal of Hydrogen Energy,2010,35(8):3832-3840.
  • 4BhouriM,Goyette J,Hardy B J,et al.Honeycomb metallic structure for improving heat exchange in hydrogen storage system[J].International Journal of Hydrogen Energy,2011,36(11):6723-6738.
  • 5GarrisonS L,Hardy B J,Gorfiounov M B,et al.Optimiza- tion of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides[J].International Journal of Hydrogen Enery,2012,37(3):2850-2861.
  • 6ShimJ H,Park M,Lee Y L,et al.Effective thermal con- ductivity of MgH2 compacts containing expanded natural graphite under a hydrogen atmosphere[J].International Joumal of Hydrogen Energy,2014,39(1):349-355.
  • 7RajuM,Kumar S.Optimization of heat exchanger designs in metal hydride based hydrogen storage systems[J].In- ternational Joumal of Hydrogen Energy,2012,37(3):2767-2778.
  • 8MeIlouliS,Askri F,Dhaou H,et al.A novel design of a heat exchanger for a metai-hydrogen reactor[J].Interna- tional Journal of Hydrogen Energy,2007,32(15):3501-3507.
  • 9Dhaou H,Ben Khedher N,Melloiili S,et al.Improvement of thermal performance of spiral heat exchanger on hydro- gen storage by adding copper fins[J].International Jour- nal of Thermal Sciences,2011,50(12):2536-2542.
  • 10Wang H,Prasad A K,Advani S G.Hydrogen storage sys- tem based on hydride materials incorporating a helical- coil heat exchanger[J].International Journal of Hydrogen Energy,2012,37(19):14292-14299.

二级参考文献12

  • 1Gilli P V. Heat transfer and pressure drop for cross flow through banks of multistar helical tube with uniform inclination and uniform longitudinal pitches[J].Nuclear Science and Engineering,1965,22:298-314.
  • 2Rogers G F C.Heat transfer and pressure loss in Helical-coiled tubes with turbulent flow[J].Int J Heat Mass Transfer,1964 ,7:1207-1216.
  • 3徐济筠. 沸腾传热和气液两相流[M].北京:原子能出版社,2000.488-491.
  • 4鲁锺琪.气液两相流动和沸腾传热[M].北京:清华大学出版社,2002.
  • 5电站锅炉水动力计算方法编写小组.电站锅炉水动力计算方法(JB/Z201-83).上海发电设备成套所,1984.
  • 6Hans W.Fricker design and manufacturing experience for the german thorium high-temperature reactor 300 MW(e) steam generator[J].Nuclear Technology,1976,28(3):339-347.
  • 7Takao Hayashi.Comparison of heat transport capability of a steam generator(SG) in a high-temperature gas-cooled reactor with that of an SG in other types of reactors[J].Nuclear Technology,1987,78(2):216-226.
  • 8温丽丽,刘俊勇.混合系统中、长期节能调度发电计划的蒙特卡罗模拟[J].电力系统保护与控制,2008,36(24):24-29. 被引量:28
  • 9居怀明,徐元辉,黄志勇,刘志勇,李军,何学东.HTR-10 蒸汽发生器密度波不稳定性分析[J].清华大学学报(自然科学版),1998,38(5):72-75. 被引量:8
  • 10金鹏,艾欣,许佳佳.基于序列运算理论的孤立微电网经济运行模型[J].中国电机工程学报,2012,32(25):52-59. 被引量:45

共引文献8

同被引文献15

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部