期刊文献+

基于Kinect的拳击虚拟训练系统 被引量:5

A design of a virtual boxing training system based on Kinect somatosensory sensor
下载PDF
导出
摘要 沙袋击打训练是拳击训练的有效手段,应用体感交互技术和虚拟现实,设计并实现了虚拟的沙袋击打仿真系统。该系统主要包含虚拟场景搭建、体感交互和训练信息系统。拳击场景建立了拳台、沙袋、拳击手套和背景模型,并通过Direct 3D接口加载到虚拟系统中。交互系统通过Kinect体感传感器追踪并获取训练者骨骼关节点坐标,从中提取肘、腕关节建立空间向量并计算击打速度和击打力,控制虚拟拳头击打虚拟沙袋,通过体感交互的方式虚拟真实训练过程,并在信息系统中记录训练信息。实验和测试表明,此系统能够实现模拟训练的功能,为拳击游戏与教学提供了新的手段。 Heavy-bag practice is an effective means for boxing training. Based on Kinect somatosen- sory interaction technology and virtual reality, we design and implement a virtual heavy-bag boxing training system, which consists of virtual scenes, somatosensory interaction and file management. Vir- tual scenes are established by loading the square ring model, heavy-bag, boxing gloves and boxing back- ground using Direct 3D interface. The system uses Kinect somatosensory sensors to simulate the real process of boxing training, including tracking and getting the coordinates of the joints of human body, calculating the impact force and speed, and controlling the virtual fists to beat the sandbag. Experimen- tal results show that the proposed design can not only achieve good heavy-bag training effect, but also provide a new method for boxing teaching and playing boxing games.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第9期1736-1741,共6页 Computer Engineering & Science
基金 内蒙古科技大学创新基金资助项目(2012NCL027)
关键词 体感交互 Kinect传感器 拳击训练 虚拟现实 somatosensory Kinect sensor boxing virtual reality
  • 相关文献

参考文献4

二级参考文献29

  • 1刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 2徐华峰.自行车运动稳定性研究[J].振动与冲击,1994,13(3):70-75. 被引量:4
  • 3Van den Bergh M, Van Gool L. Combining RGB and ToF cameras for real-time 3D hand gesture interaction[C]//IEEE Workshop on Application of Computer Vision. Piscataway, N J, USA: IEEE, 2011: 66-72.
  • 4Pang Y Y, Ismail N A, Gilbert P L S. A real time vision-based hand gesture interaction[C]//4th Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. Piscataway, NJ, USA: IEEE, 2010: 237-242.
  • 5Kao M C, Li T H S. Design and implementation of interaction system between humanoid robot and human hand gesture[C]//Proceeding of SICE Annual Conference. Piscataway, NJ, USA: IEEE, 2010: 1616-1621.
  • 6Lee S, Choi J, Oh S, et al. A real-time 3D IR camera based on hierarchical orthogonal coding[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 2035-2040.
  • 7Huang J, Ma Z, Hu Y, et al. Robotic 3D structured light scanning system based on external axle[C]//International Conference on Intelligent Computation Technology and Automation. Piscataway, NJ, USA: IEEE, 2008:1126-1129.
  • 8Hu M K. Visual pattem recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
  • 9Murthy G R S, Jadon R S. Hand gesture recognition using neural networks[C]//2nd International Advance Computing Conference. Piscataway, NJ, USA: IEEE, 2010: 134-138.
  • 10漆安慎,力学基础,1982年

共引文献100

同被引文献74

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部