期刊文献+

基于条件随机场模型的数据异常检测算法 被引量:3

Abnormal data detection algorithm based on conditional random fields model
下载PDF
导出
摘要 企业数据中心作为辅助决策的重要工具,保证其数据的及时性、准确性和科学性是最基本的要求和最核心的原则。对于数据异常的情况,若仅依靠人为的经验在海量数据中进行判断是很困难的,也是不科学且低效的。针对企业购销存数据的准确性问题,研究了基于机器学习的数据异常检测算法。由于购销存数据是由一组相对固定的数据项组成,可以看作是一个结构化数据序列,因此选择了解决结构化序列预测问题最为有效的条件随机场模型CRFs。通过对大量历史数据进行学习,分析出数据的自身规律以及关联关系,使计算机具备自动检测异常的能力。实验结果表明了该算法的有效性。 Data centers are an important auxiliary tool for business leaders to make decisions, and timely, accurate and scientific data are basic requirements and key principles. It is difficult and ineffi- cient to find out abnormal one in huge amounts of data by human experience. In this paper, we propose an algorithm for detecting abnormal data based on machine learning. Because enterprise sales data con- sist of a series of relatively fixed data items, they can be recognized as a structured data sequence. Con- ditional Random Fields (CRFs) model is efficient for structured data sequence prediction, so it can be used as the detection model. A large number of history data are learnt and their intrinsic rules and rela- tionship are analyzed so as to enable computers to detect abnormal data automatically. Experimental result shows the effectiveness of the proposed algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第9期1756-1760,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61202335)
关键词 数据中心 机器学习 数据异常检测 条件随机场模型 data center machine learning detection of abnormal data conditional randomfieldsmodel
  • 相关文献

参考文献11

  • 1Jiang Xiao-fang. Date center,a good helperofleaders[J]. Chi- na Tobacco,2012(5) :1. (in Chinese).
  • 2Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistie models for segmentingand labeling se- quence data :C]//Proc of the 18th International Conference on Machine Learning, 2001 : 282-289.
  • 3Quattoni A,Collins M,Darrell T. Conditional random fields for object recognition [C] ffProc of Advances in Neural In formation Processing Systems (NIPS-17), 2005 : 1097-1104.
  • 4McCallum A. Efficiently inducing features of conditional ran- dom fields [C]//Proc of the 19th Conference on Uncertainty in Artificial Intelligence,2003:403-410.
  • 5Culotta A,Bekkerman R,McCallum A. Extracting social net- works and contact information from email and the web [C]// Proc of the 1st Conference on Email and Anti-Spam (CEAS), 2004:1.
  • 6Wen Ya-mei. Studies on 3D solid reconstruction from 2D en- gineering drawings with sectional views ED]. Beijing: Tsing- hua University, 2012. (in Chinese).
  • 7Sutton C, McCallum A. An introduction to conditional ran- dom fields for relational learning [M]//Introduction to Sta- tistical Relational Learning. Massachusetts: MIT Press, 2006.
  • 8Liu D, Nocedal J. On the limited memory BFGS method for large scale optimization [J]. Mathematical Programming, 1989,45 (1) : 503-528.
  • 9Kschischang F, Frey B, Loeliger H. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Informa- tion Theory,2001,47(2) :498-519.
  • 10Sha F,Pereira F. Shallow parsing with conditional random fields [C']//Proc of Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume ( HLT-NAACL), 2003:213-220.

同被引文献37

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部