期刊文献+

纽结补中本质曲面的性质 被引量:1

Properties of essential surfaces in link complement
下载PDF
导出
摘要 通过对非简单拓扑图的性质进行讨论,研究了纽结补中的不可压缩、分段不可压缩曲面的性质.通过拓扑图的特征数给出了这些曲面亏格的性质,同时对不可压缩、分段不可压缩曲面的分支数与非简单拓扑图的非最内环道的字表示间的关系进行了研究.设曲面SS3-K是不可压缩、分段不可压缩曲面,S2±是二维球面,给出了拓扑图每条闭曲线C字的表示w±(C),这些字母有P,S,它们描述了曲面的分支数和bubbles的相交,证明了当S∩S2±的图(即拓扑图)的分支数等于3时,若拓扑图是非简单的,那么非简单拓扑图有唯一的形式,并通过单位拓扑图给出它们的表示,从而得到拓扑图的特征数是2,进而曲面S的亏格等于0(这里S是纽结补中的本质曲面). In this paper,we deal with incompressible pairwise incompressible surfaces in link complements by studying the properties of non-simple topological graph.We give the properties of genus by using the characteristics number.We discuss the relation between the boundary components number of essential surfaces and the words of loops in non-simple topological graph.Let SS^3-Kbe incompressible pairwise incompressible surface and let S±^2 be 2-sphere.Each component Cof S∩S±^2can be associated a cyclic word w±(C)in letter P(=puncture)and S(=saddle),which records,in order,the intersections of C with Kand with the bubbles,respectively.We give the properties of non-simple topological graph by making use of definitions,theorems and properties of the topological graph,essential surfaces in link complements.One can know that the topological graph with three components has a unique form.We prove that the characteristic number of the topological graph is two and the genus of the essential surface equals zero if the topological graph is non-simple and the component number of non-simple topological graph S∩S2±is three.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2015年第3期289-293,共5页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金项目(11471151)
关键词 非简单拓扑图 本质曲面 亏格 特征数 纽结 non-simple topological graph essential surface characteristic number genus knot
  • 相关文献

参考文献9

  • 1MENASCO W W.Closed incompressible surface in alternating knot and link complements[J].Topology,1984,23(1):37-44.
  • 2MENASCO W W,THISTLETHWAITE M B.Surfaces with boundary in alternating knot exteriors[J],J Reine Angew Math,1922,426:47-65.
  • 3MENASCO W W.A geometric proof that alternating knot are nontrial[J].Math Proc Combridge Philos Soci,1991,109:425-431.
  • 4MENASCO W W.Determining incompressibility of surfaces in alternating knot and link complements[J].Pacific J Math,1985,17(2):352-370.
  • 5ADAMS C,BROCK J,BUGBEE J.Almost Alternating Links[J].Topology and Its Applications,1992,46:151-165.
  • 6KAZUHIRO Ichihara,MAKOTO Ozawa.Accidental surfaces in knot complements[J].Knot Theory and Its Ramifications,2000,9(6):725-733.
  • 7HAN Youfa.Incompressible pairwise incompressible surfaces in almost alternating knot complements[J].Topology and Its Appli- cation,1997,80:239-249.
  • 8韩友发.INCOMPRESSIBLE PAIRWISE INCOMPRESSIBLE SURFACES IN LINK COMPLEMENTS[J].Acta Mathematica Scientia,2011,31(3):1011-1019. 被引量:4
  • 9韩友发.交错纽结补中的不可压缩、两两不可压缩曲面[J].Journal of Mathematical Research and Exposition,1997,17(3):459-462. 被引量:4

二级参考文献8

  • 1Asaeda Marta M, et al. Kauffman-Harary conjecture holds for montesios knots. J Knot Theory Ramif, 2004, 4:467-477.
  • 2E1-Sayied H K. Incompressible surfaces and (1,1)-knots. J Knot Theory Ramif, 2006, 7:935-948.
  • 3Kang Ensil. Seifert surfaces in knot complements. J Knot Theory Ramif, 2007, 8:1053-1066.
  • 4Menasco W W, Thistlethwaite. Surfaces with boundary in alternating knot exteriors. J Reine Angew Math, 1992, 426:47 -65.
  • 5Menasco W W. Closed incompressible surfaces in alternating knot and link complements. Topology, 1984, 1:37-44.
  • 6Adams C C, etc. Almost alternating links. Topol Appl, 1992, 46:151- 165.
  • 7Han Youfa. Incompressible pairwise incompressible surfaces in almost alternating knot complements. Topol Appl, 1997, 80:239-249.
  • 8Han Youfa, Liu Haiyan, Liu Yu. Pairwise incompressibility of surfaces in knot complements. J Lioaning Normal University, 2004, 1:4-9.

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部