期刊文献+

基于中值滤波的分布式扩散最小均方算法 被引量:4

An improved distributed diffusion least mean square algorithm
下载PDF
导出
摘要 研究无线传感网潜在的恶意攻击节点对系统整体估计性能的影响,从节点选择的角度入手,改进原有扩散最小均方算法的融合步骤。针对接收到的相邻居节点估计值采用中值滤波处理,替代原来的融合方法,以降低恶意攻击节点对整个网络的影响。通过改变恶意节点攻击强度或恶意节点度,对改进算法进行仿真,结果显示全局均方偏差值有所降低,且改进算法对恶意节点攻击强度和恶意节点度的改变并不敏感。 To study the impact of malicious nodes on signal estimation performance for wireless sensor networks (WSN) in an untrustworthy environment, the diffusion least mean square (MFDLMS) algorithm based on the median filtering mechanism is proposed from the perspective of the node selection. The existing fusion step of the diffusion least mean (DLMS) algorithm is therefore improved to reduce the impact of malicious attacks on the entire network, of which the estimated value received from neighbor nodes are processed by the median filtering. The improved algorithm is simulated with the change of the attack power and the degree of malicious nodes. Results show that the mean square deviation (MSD) curve is decreased, which means that the improved algorithm is insensitive to the attack power and the degree of malicious nodes.
出处 《西安邮电大学学报》 2015年第5期34-37,90,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61271276) 陕西省自然科学基金资助项目(2014JM8299) 陕西省教育厅科学研究计划资助项目(14JK1681)
关键词 无线传感器网络 恶意攻击 分布式 扩散最小均方 中值滤波 wireless sensor network, malicious attack, distributed, diffusion lms, median filtering
  • 相关文献

参考文献15

  • 1Estrin D, Girod L, Pottie G, et al. Instrumenting theworld with wireless sensor networks[C/OL]// IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP' 01 ). Salt Lake City: IEEE, 2001: 2033-2036. (2001-05-07) [2014-09- 20 ]. http://ieeexplore, ieee. org/xpl/articleDetails. jsp? tp :&arnumber : 940390&queryText% 3DInstrumenting+ the + world + with + wireless + sensor+ networks.
  • 2Lopes C G, Sayed A H. Diffusion least-mean squares over adaptive networks: Formulation and performance analysis[J]. IEEE Transactions on Signal Process- ing, 2008, 56(7): 3122-3136.
  • 3Lopes C G, Sayed A H. Incremental adaptive strate- gies over distributed networks[J]. IEEE Transactions on Signal Processing, 2007,55 (8) : 4064-4077.
  • 4Schizas I D, Mateos G, Giannakis G B. Distributed LMS for consensus-based in-network adaptive process- ing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2365-2382.
  • 5Arablouei R, Werner S, Huang Yih-Fang, et. al. Dis- tributed Least Mean-Square Estimation With Partial Diffusion[J]. IEEE Transactions on Signal Process- ing,2014, 62(2) :472-484.
  • 6Cattivelli F S, Sayed A H. Diffusion LMS strategies for distributed estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 1035-1048.
  • 7Tu Shengyuan, Sayed A H. Diffusion strategies out- perform consensus strategies for distributed estimation over adaptive networks[J]. IEEE Transactions on Sig- nal Processing, 2012, 60(12): 6217-6234.
  • 8白辉,卢光跃,王晓侃.非信任环境中一致卡尔曼滤波的数据融合算法[J].西安邮电学院学报,2012,17(5):10-14. 被引量:5
  • 9冯景瑜,卢光跃,包志强.认知无线电安全研究综述[J].西安邮电学院学报,2012,17(2):47-52. 被引量:10
  • 10de Paula A, Panazio C. Analysis of distributed parame- ter estimation in WSN with unreliable nodes[C/OL]// International Symposium on Wireless Communication Systems. Paris: IEEE, 2012: 116-120. (2012-08-28) [2014-09-25]. http://ieeexplore, ieee. org/xpl/article-Details. jsp? tp : ~arnumber : 6328341 ~queryText % 3DAnalysis + of+ distributed+ parameter+ estimation + in + WSN + with + unreliable + nodes.

二级参考文献40

  • 1Cattivelli F S, Sayed A H. Diffusion Strategies for Distributed Kalman Filtering and Smoothing[J]. Au- tomatic Control, IEEE Transactions on, 2010, 55 (9) : 2069-2084.
  • 2Liu Juan, Reich J, Zhao Feng. Collaborative in-net- work processing for target tracking [J ]. EURASIP Journal On Applied Signal Applied Signal Processing, 2003(4) :378-391.
  • 3Xiao Lin, Boyd S, Lall S. A space-time diffusion scheme for peer-to-peer least-squares estimation[C]// The 5th International Conference on Information Pro- cessing in Sensor Networks. New York, NJ, USA. ACM, 2006:168-176.
  • 4Chen Bo, Yu Li, Zhang Wen-An, et. al. Distributed robust fusion Kalman filtering for uncertain stochastic systems with random delays and missing measure- ments[C]// Control Conference (ASCC), 2011 8th Asian. 15-18 May 2011: 288-1293.
  • 5Yoon Ju-hong, Bae Seung-hwan, Shin V. Comparison of Distributed Fusion Filters for Linear Dynamic Sys- tem with Uncertainty[C]// Computer and Network Technology (ICCNT), 2010 Second International Conference on. 23-25 April 2010: 367-371.
  • 6Olfati-Saber R. Distributed Kalman Filter with embed- ded consensus filters[C]//44th IEEE Conference on Decision and Control, 2005 and 2005 European Con- trol Control Conferenc 2005. 8170-8184.
  • 7Talebi M S. Adaptive Consensus Averaging for Infor- mation Fusion over Sensor Networks[C]// Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE In- ternational Conference on.. Oct. 2006.. 562-565.
  • 8Olfati-Saber R. Distributed Kalman Filtering for Sen- sor Networks[C]//46th IEEE Conference on Decision and Control 2007 , New Orleans, LA. Dee. 2007: 12-14.
  • 9Mitola J,Maguire G. Cognitive Radio:Making Soft-ware Radios More Personal[J].IEEE Personal Com-munications,1999,(04):13-18.
  • 10Zhang Yuan,Xu Gaochao,Geng Xiaozhong. SecurityThreats in Cognitive Radio Networks[A].

共引文献12

同被引文献31

  • 1THEODORIDIS S, SLAVAKIS K, YAMADA I. A- daptive learning in a world of projections [J/OL]. IEEE Signal Processing Magazine, 2011, 28 (1) : 97- 123 [ 2015-10-117. http://ieeexplore, ieee. org/xpls/ icp. jsp? arnumber~5670637.
  • 2XIE S L, LI H R. Distributed LMS with limited data rateFJ/OL]. Electronics Letters, 2011, 47 (9) : 541- 542 [2015-10-111. http..//dx, doi. org/10. 1049/el. 2011. 0251.
  • 3CATTIVELLI F S, SAYED A H. Modeling bird flight formations using diffusion adaptation[J/OL3. IEEE Transactions on Signal Processing, 2011, 59 (5): 2038-205112015-10-111. http://dx, doi. org/10. ll09/TSP. 2011. 2107907.
  • 4LOPES C G, SAYED A H. Incremental adaptive strategies over distributed networks [J/OL]. IEEE Transactions on Signal Processing, 2007, 55 (8) : 4064-407712015-10-11]. http://dx, doi. org/10. 1109/ TSP. 2007. 896034.
  • 5LOPES C G, SAYED A H. Diffusion least-mean squares over adaptive networks: formulation and per- formance analysisrJ/OL]. IEEE Transactions on Sig- nal Processing, 2008, 56(7): 3122-313612015-10- 11]. http://dx, doi. org/10, ll09/TSP. 2008. 917383.
  • 6SCHIZAS I D, MATEOS G, GIANNAKIS G B. Dis- tributed LMS for consensus-based in-network adaptive processing[J/OL]. IEEE Transactions on Signal Pro- cessing, 2009, 57 (6): 2365-23821-2015-10-11]. ht- tp://dx, doi. org/10, ll09/TSP. 2009. 2016226.
  • 7LIU Y, TANG W K S. Enhanced incremental LMS with norm constraints for distributed in-network esti- mation[J/OL]. Signal Process, 2014, 94(1): 373-385 [2015-10-11]. http://dx, doi. org/10. 1016/j. sigpro. 2013.07. 001.
  • 8LORENZO P D, SAYED A H. Sparse distributed learning based on diffusion adaptation[J/OL]. IEEE Transactions on Signal Process, 2013, 61 (6).. 1419- 1433[2015-10-11]. http..//dx, doi. org/10. 1109/TSP. 2012. 2232663.
  • 9KAR S, MOURA J M F, RAMANAN K. Distributed pa- rameter estimation in sensor networks: nonlinear observa- tion models and imperfect communication [J/OL]. IEEE Transactions on Information Theory, 2008, 58(6): 3575- 3605 E 2015-10-11]. http;//ieeexplore, ieee~ org/stamp/ stamp, jsp? arnumber=6172233.
  • 10CATTIVELLI F S, SAYED A H. Diffusion LMS strategies for distributed estimation [J/OL], IEEE Transactions on Signal Process, 2010, 58(3).. 1035- 1048 [2015-10-11]. http://dx, doi. org/10. 1109~~ 2fTSP. 2009. 2033729.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部