期刊文献+

考虑一阶驾驶仪动力学的角度控制最优制导律 被引量:2

Optimal Impact-Angle-Control Guidance Law Considering a First-Order Autopilot Dynamics
下载PDF
导出
摘要 为研究考虑驾驶仪动力学的最优制导律,构造了引入一阶驾驶仪动力学的导弹运动方程.基于带终端状态约束的最优控制问题,将传统的目标权函数扩展为导弹剩余飞行时间负n次幂的形式,推导得到考虑一阶驾驶仪动力学的最优制导律通用表达式.通过将目标函数的终端状态权系数选为无穷大,化简得到考虑一阶驾驶仪动力学的角度控制最优制导律OIACGL-1,并讨论了OIACGL-1的两种简化形式.引入落角约束和初始方向误差,分析了OIACGL-1系统的归一化加速度特性;分析指出,OIACGL-1系统在n≥0时的终端加速度指令严格为0,对应的终端加速度响应近似为0. In order to study the optimal guidance law with autopilot dynamics, the missile motion equations were constructed. Aiming at the optimal control problem with terminal state constraints, a generalized expression of the optimal guidance law considering a first-order autopilot dynamics was derived, extending the traditional weighting function to the-nth power form of time-to-go. By setting the object function's terminal-state-weighting-coefficient as infinity values, an optimal impact-angle-control guidance law considering a first-order autopilot dynamics (OIACGL-1) was proposed. Meanwhile, two simplified forms of the OIACGL-1 were discussed. For the OIACGL- 1 system with impact angle constraint and initial heading error, performance of the normalized terminal acceleration was analyzed. The analysis results show that for the OIACGL-1 system, the normalized terminal acceleration commands are always equal to exactly zero values when n= 0, while the corresponding terminal acceleration responses are approach to near zero values.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第6期585-591,共7页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61172182)
关键词 飞行器控制及导航技术 最优制导律 落角约束 归一化加速度 制导性能 control and navigation technology of missile optimal guidance law impact angle constraint normalized acceleration guidance performance
  • 相关文献

参考文献15

  • 1Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Virginia: AIAA Inc. , 2007:31 - 50,541 - 569.
  • 2Ryoo C K, Shin H S, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(1) :80 - 95.
  • 3Yoon M G. Relative circular navigation guidance for the impact angle control problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44 ( 4 ) : 1449 - 1463.
  • 4Cherry G. A general explicit, optimizing guidance law for rocker-propelled spacecraft, AIAA 1964[R].[S. 1.]: AIAA, 1964:614-638.
  • 5Song T L, Shin S J. Time-optimal impact angle control for vertical plane engagements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35 (2): 738 - 742.
  • 6Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal ofGuidance, Control, and Dynamics, 2005, 28 ( 4): 724 -732.
  • 7Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Control Systems Technology, 2006,14(3) :483 - 492.
  • 8Lee Y I, Kim S H, Tahk M J. Optimality of linear time-varying guidance for impact angle control [J ]. IEEE Transactions on Aerospace and Electronic Systems, 2012,48(3) :2802 - 2817.
  • 9Lee Y I, Kim S H, Lee ~ I. Analytic solutions of generalized impact angle control guidance law for first- order lag system[J]. Journal of Guidance, Control, and Dynamics, 2013,36(1) :96 - 112.
  • 10Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control, and Dynamics, 2006,29(2) :261 - 268.

二级参考文献30

共引文献58

同被引文献38

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部