摘要
为研究考虑驾驶仪动力学的最优制导律,构造了引入一阶驾驶仪动力学的导弹运动方程.基于带终端状态约束的最优控制问题,将传统的目标权函数扩展为导弹剩余飞行时间负n次幂的形式,推导得到考虑一阶驾驶仪动力学的最优制导律通用表达式.通过将目标函数的终端状态权系数选为无穷大,化简得到考虑一阶驾驶仪动力学的角度控制最优制导律OIACGL-1,并讨论了OIACGL-1的两种简化形式.引入落角约束和初始方向误差,分析了OIACGL-1系统的归一化加速度特性;分析指出,OIACGL-1系统在n≥0时的终端加速度指令严格为0,对应的终端加速度响应近似为0.
In order to study the optimal guidance law with autopilot dynamics, the missile motion equations were constructed. Aiming at the optimal control problem with terminal state constraints, a generalized expression of the optimal guidance law considering a first-order autopilot dynamics was derived, extending the traditional weighting function to the-nth power form of time-to-go. By setting the object function's terminal-state-weighting-coefficient as infinity values, an optimal impact-angle-control guidance law considering a first-order autopilot dynamics (OIACGL-1) was proposed. Meanwhile, two simplified forms of the OIACGL-1 were discussed. For the OIACGL- 1 system with impact angle constraint and initial heading error, performance of the normalized terminal acceleration was analyzed. The analysis results show that for the OIACGL-1 system, the normalized terminal acceleration commands are always equal to exactly zero values when n= 0, while the corresponding terminal acceleration responses are approach to near zero values.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2015年第6期585-591,共7页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金资助项目(61172182)
关键词
飞行器控制及导航技术
最优制导律
落角约束
归一化加速度
制导性能
control and navigation technology of missile
optimal guidance law
impact angle constraint
normalized acceleration
guidance performance