期刊文献+

基于可见光源与独立成分分析法的实时人眼检测系统 被引量:1

A Real-Time Eye Detection System Based on Visible Light and Independent Components Analysis
下载PDF
导出
摘要 提出一种基于特征与外貌混合检测确定人眼区域的实时人眼检测方法.首先,依据可见光源在人眼角膜上反射形成耀点特性,通过图像处理算法提取潜在耀点位置,利用人眼几何特征的确定可能人眼候补区域;然后,提取人眼数据库中具有不同外貌特征的200幅人眼图像,采用FastICA算法估计出提取人眼图像的有效成分分析(ICA)基向量;最后,通过计算人眼候选区域在基向量上投影角度判断出左、右人眼区域准确位置.实验结果表明,在人脸面部旋转、佩戴眼镜、大范围头部运动和不同光照强度下,实时人眼检测具有较高的检测正确率和较好的鲁棒性. A novel system for real-time eye detection with a hybrid eye detection method of appearance-based and feature-based was proposed. Firstly, the glints can be formed on the eye regions due to corneal reflection characteristics from the visible light. Potential glint regions were obtained based on image algorithm. According to the eye geometrical feature, the candidate eye regions can be extracted well. Secondly, 200 eye images with different appearance were extracted from the eye database. The basis vectors of independent components analysis (ICA) applied on those eye images were estimated based on the FastlCA algorithm. Lastly, the accurate eye regions were detected by the projection angles from the candidate eye images to ICA basis vectors. The experimental results showed that the real-time eye detection has a better robustness and high correct rate to different face poses, with glasses, large head movement, and various illuminations.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第6期621-626,共6页 Transactions of Beijing Institute of Technology
基金 "九八五"工程三期创新平台资助项目 国家留学基金委基金资助项目(201306030055)
关键词 有效成分分析 可见光源 人眼检测 非接触式 ICA visible light eye detection non-intrusive
  • 相关文献

参考文献11

  • 1Zhu Zhiwei, Ji Qiang. Robust real-time eye detection and tracking under variable lighting conditions and various face orientations [J]. Computer Vision and Image Understanding, 2005,38(1) :124 - 154.
  • 2Dan H, Riad H. An improved likelihood model for eye tracking [J]. Computer Vision and Image Understanding, 2007,106(2 - 3) :220 - 230.
  • 3迟健男,张闯,陈凯,胡涛.一种由粗及精的视线追踪系统平面视线参数检测方法[J].兵工学报,2012,33(8):902-911. 被引量:4
  • 4Flores M, Armingol M, Esscalera A. Driver drowsiness detection system under infrared illumination for the intelligent vehicle [J ]. IET Intelligent Transport Systems, 2011,5(4) :241 - 251.
  • 5Lee H, Luong D, Cho C, et al. Gaze tracking system at a distance for controlling IPTV[J]. IEEE Transactions on Consumer Electronic, 2008,56 (4) : 2577 - 2583.
  • 6Hansen D, Qing J. In the eye of the beholder: a survey of models for eyes and gaze[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3):478- 500.
  • 7Bartlett M, Movellan J, Selnowski T. Face recognition by independent component analysis [J]. IEEE Transactions on Neural Network, 2002, 12 ( 6 ): 1450 -1464.
  • 8Karvanen J, Koivunen V. Blind separation methods based on Pearson system and its extensions[J]. Signal Processing, 2002,82(4) :663 - 673.
  • 9Hyvarinen A. Fast and robust fixed-point algorithms for independent eomponent analysis[J]. IEEE Transactions on Neural Networks, 1999,10(3) :626 - 634.
  • 10Cardoso J, Souloumic A. Jacobi angles for simultaneous diagonalization [J]. Journal of Matrix Analysis and Applications, 1996,17 ( 1 ) : 161 - 164.

二级参考文献23

  • 1Duehowski T. Eye tracking methodology: theory, and practice [ M ]. New York: Springer-Verlag, 2003.
  • 2Jacob R J K. The use of eye movements in human computer inter- action techniques: what you look at is what you get[J]. ACM Transactions on Information Systems, 1991, 9(3 ) : 152 - 169.
  • 3Morimoto C H, Koons D, Amir A, et al. Pupil detection and tracking using multiple light sources [ J ]. Image and Vision Com- puting, 2000, 18(4) : 331 -335.
  • 4Noureddin B, Lawrence P D, Man C F. A non-contact device for tracking gaze in a human computer interface[ J ]. Computer Vision and Image Understanding, 2005, 98( 1 ) : 52 - 82.
  • 5Qiang Ji, Zhiwei Zhu, Peilin Lan. Real-time nonintrusive monito- ring and prediction of drive fatigue[ J]. 1EEE Transactions on Ve- hicular Technology, 2004, 53 (4) : 1052 - 1069.
  • 6Mimica M R M, Morimoto C H. A computer vision framework for eye gaze tracking[ C ]//Proceedings of the XVI Brazilian Sympos- kum on Computer Graphics and Image Processing, 2003, 3:1530 - 1834.
  • 7Ebisawa Y, Satoh S. Effectiveness of pupil area detection lech- nique using two light sources and image difference method [ C ]/// Engineering in Medicine and Biology Society, 1993, San Diego,1993 : 1268 - 1269.
  • 8Ebisawa Y, Improved video-bazed eye-gaze detection method [ J ]. IEEE Transactions on Instrumentation and Measurement, 1998,47 (4) : 948 -955.
  • 9Morimoto C H, Koons D, Amir A, et al. Pupil detection and tracking using multiple light sources[ J]. Image and Vision Com- puting, 2000, 18(4) : 331 -336.
  • 10Morimoto C, Flickner M. Real-time multiple face detection using active illumination [ C ] //Fourth IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble: Wiley- IEEE Press, 2000.

共引文献3

同被引文献1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部