期刊文献+

石墨烯/酞菁钴复合材料对亚硝酸根的催化性能 被引量:1

Graphene-Cobalt Phthalocyanine Complex for Electro-Catalytic of Nitrite
下载PDF
导出
摘要 研究石墨烯/酞菁钴复合材料的制备方法及电催化性能,采用微波合成法,以石墨烯(GR)、氯化钴和邻苯二腈为原料,原位合成了石墨烯/酞菁钴(GR/CoPc)复合材料.通过紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、拉曼(Raman)光谱、X射线衍射(XRD)、红外光谱(FT-IR)对其结构、微观形貌进行表征,酞菁钴呈棒状均匀分布于石墨烯的片层表面.制备了GR/CoPc/GCE修饰电极并研究了亚硝酸根在修饰电极上的电化学行为及其作用机理.GR/CoPc/GCE修饰电极对NO2-的电催化性能较单独的CoPc和GR修饰电极相比明显提高.在实验条件下,亚硝酸根在GR/CoPc/GCE修饰电极上的响应电流与其浓度在1.67-644.27μmol/L的范围内呈良好的线性关系,检测限可达0.6μmol/L.该修饰电极对亚硝酸根的检测有良好的稳定性、抗干扰性及重现性. The preparation method of graphene/cobalt phthalocyanine (GR/CoPc) and itseletrocatalysis performance was presented. Synthesized by microwave-assisted method (DMEAas the solvent), with graphene (GR), anhydrous cobalt chloride and dicyanobenzene, the GR/CoPc complex was characterized by UV-vis, TEM, Raman, XRD and FT-IR. The GR/CoPc hasCoPc distributed uniformly on its suface. EIS, CV, CA were used to study the electrocatalyticperformance of the electrodes modified by GR/CoPc, CoPc and GR. The results show that GR/CoPc/GCE exhibits better electrocatalytic activity than CoPc/GCE and GR/GCE, towards theoxidation of NOz-. The GR/CoPc/GCE shows broad linear range (1.67-644.27 gmol/L), goodstability, anti-interference and reproducible, with detection limit of O. 6 μmol/L.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第8期859-863,867,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(11179033) 北京自然科学基金资助项目(2102012)
关键词 石墨烯 酞菁 电催化 亚硝酸根 graphene phthalocyanine electrocatalysis nitrite
  • 相关文献

参考文献14

  • 1Zagal J H, Griveau S, Silva J F, et al. Metallophthalo- cyanine:based molecular materials as catalysts for elec- trochemical reactions [ J 7. Coordination Chemistry Reviews, 2010,254:2755 - 2791.
  • 2Zuo X, Zhang H, Li N, et al. An electrochemical biosensor for determination of ascorhic acid by cobalt ( II ) phthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode E J:. Sensors and Actuators B, 2012,161:1074 - 1079.
  • 3Caro C A, Bedioui F, Zagal J H. Electrocatalytic oxidation of nitrite on a vitreous carbon electrode modified with cobalt phthalocyanine[J]. Electrochimica Acta, 2002,47:1489 - 1494.
  • 4Geim A K. Graphene: status and prospects [J 1. Science, 2009,324:1530 - 1534.
  • 5Geim A K, Morozov S V, Hilll E W, et al. Detection of individual gas molecules adsorbed on graphene[J:. Nature Materials, 2007(6) :652 - 655.
  • 6Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008,321 : 385 - 388.
  • 7Kuila T, Bose S, Khanra P, et al. Recent advances in graphene-based biosensors : J :. Biosensors and Bioelectronics, 2011,26:4637 - 1548.
  • 8Shao Y Y, Wang J, Wu H, et al. Graphene based elec- trochemical sensors and biosensors: a review[J]. Elec- tronanlysis, 2010,22 (10) : 1027 - 1036.
  • 9Karousis N, Ortiz J, Ohkubo K, et al. Zinc phthalocyanine-graphene hybrid material for energy con- version: synthesis, characterization, photophysics, and photoelectrochemical cell preparation[J]. The Journal of Physical Chemistry C, 2012,116 : 20564 - 20573.
  • 10Wang S Y, Yu D S0 Dai L M, et al. Polyelectrolyte- funetionalized graphene as metal-free electrocatalysts for oxygen reduction [ J ]. Acs Nano, 2011, 5 (8): 6202 - 6209.

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部