期刊文献+

基于广义Hamilton算法的正定矩阵系统上的控制 被引量:2

Control for Positive-Definite Matrix System Based on Extended Hamiltonian Algorithm
下载PDF
导出
摘要 考虑控制输出仅依赖控制输入的正定矩阵系统,控制的最优性被描述为输出矩阵尽可能接近目标矩阵.控制输入和目标矩阵之间的度量采用测地距离,则基于广义Hamilton算法可得到从控制输入到最终控制输出的最优控制轨迹.最后,给出了正定矩阵系统上控制问题的数值模拟结果. In this paper, the control system of the positive-definite matrix whose output onlyrelied on its input was considered, where the optimal control was described as the output matrixwhich is as close as possible to the target matrix. The geodesic distance was adopted as themeasure of the initial input and the target, and then the trajectory of the control input turningfrom the initial output matrix to the final output matrix was achieved based on the extendedHamiltonian algorithm. Finally, some numerical simulations were given to illustrate our outcomefor optimizing the control system of the positive-definite matrix.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第8期864-867,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61779031 10932002)
关键词 系统控制 广义Hamilton算法 正定矩阵 测地距离 system control extended Hamiltonian algorithm positive-definite matrix geodesic distance
  • 相关文献

参考文献8

  • 1Fiori S. Extended Hamiltonian learning on Riemannian manifolds: theoretical aspects [J:. Neural Networks, IEEE Transactions on, 2011,22(5) :687 - 700.
  • 2Fiori S. Extended Hamiltonian learning on Riemannian manifolds: numerical aspects[J:. Neural Networks and Learning Systems, IEEE Transactions on, 2012,23 (1) : 7 -21.
  • 3Amari S I. Natural gradient works efficiently in learning[J]. Neural Computation, 1998,10(2) :251 - 276.
  • 4Luo Z, Sun H. Extended Hamiltonian algorithm for the solution of discrete algebraic Lyapunov equations [J]. Applied Mathematics and Computation, 2014, 234: 245 - 252.
  • 5Zhang Z, Sun H, Peng L. Natural gradient algorithm for stochastic distribution systems with output feedback [J]. Differential Geometry and its Applications, 2013, 31:682 - 690.
  • 6Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices[ J 1. SIAM Journal on Matrix Analysis and Applications, 2005,26 (3) : 735 - 747.
  • 7Arsigny V, Fillard P, Pennec X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2007,29(1) :328 - 347.
  • 8Duan X, Sun H, Zhao X. Riemannian gradient algorithm for the numerical solution of linear matrix equationsEJ3. Journal of Applied Mathematics, 2014.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部