期刊文献+

节点密度的度量方法及其应用

Measurement method of node density and its application
下载PDF
导出
摘要 应用随机分布的节点集进行函数逼近时,点的支撑域的大小对逼近的有效性及精度有很大影响.为研究移动最小二乘法中最优的支撑域半径,首先给出了一种全新的节点密度的概念,它不仅能刻画节点分布的疏密程度,而且其计算算法简单,也便于点的支撑域半径的选取;其次,基于节点密度的概念给出了搜索支撑域内节点的领域搜索算法,与通常使用的全域搜索算法相比,领域搜索算法提高了计算效率,节省了搜索节点需要的时间;最后给出算例,验证文中提出的计算点的支撑域半径算法的有效性. When a randomly distributed set of nodes is used for function approximation,the radius of support domain of a point has a great influence on the validity and accuracy of approximation.In order to help to find the optimal radius of the support domain for moving least square method,a new notion of the node density is proposed in this paper firstly.For any given point,it is simple to calculate its density,and easy to find a proper radius of support domain.Secondly,based on the notion of density,a new neighborhood search algorithm suitable for both uniform and random distributed node sets,named as leading search,is proposed for search a given number of nodes near a point.Compared to the commonly used global search algorithm,the leading search algorithm improves the efficiency of computation and saves the time required for the node search.Finally,numerical examples are presented to verify the validity of the algorithm.
出处 《应用数学与计算数学学报》 2015年第3期330-337,共8页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11071196 11471262)
关键词 移动最小二乘(MLS) 支撑域半径 领域搜索算法 节点密度 moving least squares radius of support domain leading search algorithm node density
  • 相关文献

参考文献7

二级参考文献22

  • 1左传伟,聂玉峰,赵美玲.移动最小二乘方法中影响半径的选取[J].工程数学学报,2005,22(5):833-838. 被引量:17
  • 2杨津光.开式压力机机身主截面的优化设计及八节点等参元计算[A]..三省一市第二届锻压年会论文集[C].,1985..
  • 3Atluri S N.The meshless methods (MLPG) for domain &BIE discretization[M].Forsyth:Tech Science Press,2004.
  • 4Pan X F,Zhang X,Lu M W.Meshless Galerkin least-squares method[J].Computational Mechanics,2005,35(3):182-189.
  • 5Nayroles B, et al. Generalizing the finite element method: diffuse approximation and diffuse elements.J]. Comput Mech, 1992,10:307-318.
  • 6Belytsehko T, Lu Y Y, Gu L. Element-free Galerkin method [J]. Int J Numer Methodds Engrg. 1994,37 : 229-256.
  • 7Onate E, Idelsohn S, Zienkiewicz 0 C. Finite point method in computational mechanics [J]. Int J Numer Meth Engng, 1996,22(39):3839-3866.
  • 8Atluri S N, Sladek J, Sladek V. The Local Boundary Integral Equation (LBIE) and its meshless imple-mentation for linear elasticity [J]. Comput Mech 2000,25: 180-198.
  • 9Beissel S, Belytsehko T. Nodal integration of the element-free Galerkin method [J]. Comput Methods Appl Mech Engrg, 1996,139:205-230.
  • 10Krysl P, Belytschko T. Element-free Galerkin method:convergence of the continuous and discontinuous shape functions [J]. Comput Methods Appl Mech Engrg, 1997,148 (3-4) : 257-277.

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部