期刊文献+

基于EEG熵值的驾驶员脑力负荷水平识别方法 被引量:7

Recognition method of driving mental workload based on EEG entropy
下载PDF
导出
摘要 为了对驾驶员脑力负荷予以有效识别,基于脑电信号指标构建了一种驾驶员脑力负荷识别方法.对驾驶员脑电信号进行快速傅里叶变换(FFT),选取θ(4~8 Hz),α(8~13 Hz),β(13~30 Hz)3个频段的频谱幅值分别进行熵处理,对所得到的熵值作为脑力负荷识别参数,并对识别参数进行Kruskal-Wallis检验,选取差异最为显著的10项参数作为脑力负荷特征指标,在此基础上结合BP模型构建了驾驶员脑力负荷识别模型.基于驾驶模拟器实验数据,模型识别正确率为87.8%~90.4%.结果表明,该模型对驾驶员脑力负荷识别具有较高准确性,可实现不同驾驶员脑力负荷的有效识别,为未来自动辅助驾驶系统构建及车载信息系统优化设计提供算法依据. In order to recognize driving mental workload efficiently,a recognition method of driving mental workload based on EEG indices is constructed.After the fast Fourier transform (FFT)of the electroencephalograph (EEG),the entropy processing of three bands of spectrum,θ(4 to 8 Hz),α(8 to 13 Hz),β(13 to 30 Hz),are conducted respectively,and the value of entropy is used as mental workload recognition parameter.Then 10 difference-remarkable indices are chosen as the characteristic features after the Kruskal-Wallis test of the recognition parameters.Meanwhile,combi-ning with the back propagation (BP)neural network,the recognition model for state of driving mental workload is established.The EEG data based on the simulator are used to test the model and the recognition accuracy rate is within 87.8% to 90.4%.The results show that the proposed model is accurate for the recognition of driving mental workload and achieves the recognition of different drivers.The model provides a algorithm basis for constructing automatic auxiliary driving system in the future and the optimization design of the traffic information system.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期980-984,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51108390 U1234206)
关键词 驾驶脑力负荷 EEG BP神经网络 driving mental workload entropy electroencephalograph (EEG) back propagation(BP) neural network
  • 相关文献

参考文献11

  • 1Chen M Y, Fang Y H, Zheng X F. Phase space reconstruction for improving the classification of single trial EEG [J]. Biomedical Signal Processing and Con- trol, 2014, 11(5) : 10-16.
  • 2Stuiver A, Brookhuis K A, de Waard D, et al. Short- term cardiovascular measures for driver support: increasing sensitivity for detecting changes in mental workload [J]. International Journal of Psychophysiolo- gy, 2014, 92(1) : 35 -41.
  • 3石京,肖遥.驾驶心理对交通安全的影响[J].交通信息与安全,2014,32(5):65-70. 被引量:12
  • 4Venables L, Fairclough S H. The influence of perform- ance feedback on goal-setting and mental effort regulation [ J ]. Motivation and Emotion, 2009, 33 ( 1 ) : 63 - 74.
  • 5曾庆新,庄达民,马银香.脑力负荷与目标辨认[J].航空学报,2007,28(B08):76-80. 被引量:16
  • 6潘津津,焦学军,姜劲,徐凤刚,杨涵钧.利用功能性近红外光谱成像方法评估脑力负荷[J].光学学报,2014,34(11):336-341. 被引量:22
  • 7康卫勇,袁修干,柳忠起,董大勇.瞳孔的变化与脑力负荷关系的试验分析[J].航天医学与医学工程,2007,20(5):364-366. 被引量:32
  • 8Murata A. An attempt to evaluate mental workload using wavelet transform of EEG [ J ]. Human Factors: The Journal of the Human Factors and Ergonomics So- ciety, 2005, 47(3): 498-508.
  • 9Borghini G, Astolfi L, Vecchiato G, et al. Measuring neurophysiological signals in aircraft pilots and car driv- ers for the assessment of mental workload, fatigue and drowsiness[J]. Neuroscience & Biobehavioral Reviews, 2014, 44 : 58 - 75.
  • 10de Joux N, Russell P N, Helton W S. A functional near-infrared spectroscopy study of sustained attention to local and global target features [ J ]. Brain and Cog- nition, 2013, 81(3): 370-375.

二级参考文献68

共引文献88

同被引文献32

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部