期刊文献+

突发事件下旅客列车行车组织双层规划模型 被引量:6

Bi-level programming model on passenger train operation in emergency
下载PDF
导出
摘要 针对突发事件条件下行车组织所具有的结构复杂、涉及对象多样、运营环境动态变化等特点,建立了列车开行方案与运行计划调整的双层规划模型.上层对列车迂回、列车重联、列车停运等调度策略进行优化,以充分利用路网能力,完成旅客输送过程.在给定上层调度方案后,下层采取改变列车区间运行时间、列车停站时间和列车越行方式等策略,以尽量减少列车晚点的情况和被严重影响的列车数量,恢复按图行车.下层为上层提供调整后的运行时刻表,实现双层迭代整体优化.以京沪高速及相关铁路进行实例分析,实现了在不同突发事件影响范围和限速条件下双层规划模型的迭代过程.实验结果证明,借助双层规划模型可充分利用路网能力,减少突发事件造成的不利影响. Because of the train operation characteristics of complex structure,diverse objects and dynamic changes in emergency,a bi-level programming model is proposed to handle line plan adjustment and timetable rescheduling problem.The top layer optimizes the dispatching policies including making trains detour,merging trains and cancelling trains to take full use of rail network capabilities and complete the passenger transportation.Given a specific dispatching scheme,the low layer takes the strategies of changing the running time at a section,the dwell time at a station and the train stopovers to minimize the train delay as well as the number of seriously impacted trains and to realize the planned schedule.The low layer provides the adjusted timetable to the top layer,which realizes the double layer integration optimization.The case study on Beijing to Shanghai high-speed line and related railway realizes the iteration of the bi-level programming model under different emergency conditions of affected area and speed restriction.The results show that the bi-level programming model can make full use of railway network capacity to reduce the impact of emergency.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期996-1001,共6页 Journal of Southeast University:Natural Science Edition
基金 "十一五"国家科技支撑计划资助项目(2009BAG12A10) 中国铁路总公司科技研究开发计划课题资助项目(2013F022) 中央高校基本科研业务费专项资金资助项目(T14JB00380)
关键词 突发事件 行车组织 运行计划 开行方案 双层规划 emergency train operation operation plan line plan bi-level programming
  • 相关文献

参考文献7

  • 1Rodriguez J. A constraint programming model for real- time train scheduling at junctions [ J ]. Transportation Research Part B. Methodological, 2007,41(2) : 231 - 245.
  • 2陈雍君,周磊山.基于序优化方法的列车运行调整算法研究[J].铁道学报,2010,32(3):1-8. 被引量:20
  • 3Wang Li, Qin Yong, Xu Jie, et al. A fuzzy optimiza- tion model for high-speed railway timetable rescheduling [J]. Discrete Dynamics in Nature and Society, 2012, 2012 : 827073-1 - 827073-22.
  • 4D'Ariano A, Pranzo M, Hansen I. Conflict resolution and train speed co-ordination for solving real-time time- table perturbations [ J ]. IEEE Transactions on Intelli- gent Transportation Systems, 2007, 8(2): 208-222.
  • 5D'Ariano A, Corman F, Pacciarelli D, et al. Reorde- ring and local rerouting strategies to manage train traffic in real time [ J ]. Transportation Science, 2008, 42 (4) : 405 -419.
  • 6Caimi G, Fuchsberger M, Laumanns M, et al. Periodic railway timetabling with event flexibility [J]. Net- works, 2011, 57(1): 3-18.
  • 7王莉,秦勇,徐杰,贾利民.突发事件条件下的铁路行车组织[J].东南大学学报(自然科学版),2013,43(A01):12-17. 被引量:10

二级参考文献16

  • 1史峰,黎新华,秦进,邓连波.单线列车运行调整的最早冲突优化方法[J].中国铁道科学,2005,26(1):106-113. 被引量:24
  • 2周磊山,秦作睿.列车运行计划与调整的通用算法及其计算机实现[J].铁道学报,1994,16(3):56-65. 被引量:52
  • 3杨浩.铁路运输组织学[M].北京:中国铁道出版社,2007:34-35.
  • 4Szpigel B. Optimal train scheduling on a single line railway[M]. Operational Research, 1973,7:344-351.
  • 5Araya S, Abe K, Fukumori K. An optimal rescheduling for online train traffic control in disturbed situation[C]// Proc. 22nd IEEE Conf. Decision and Control. New York: IEEE, 1983,489-494.
  • 6Sauder R L, Westerman W M. Computer aided train dispatching: decision support through optimization[J]. Interfaces, 1983,13(6):24-37.
  • 7Jovanovic D, et al. A Decision support system for train dispatching: an optimization-based methodology[J]. Transportation Research, 1990,31 (1) : 25-37.
  • 8Cury J E,Gomide F A C, Mendes M J. A methodogy for generation off optimal schedules far an underground technique[J]. IEEE Trans on Robotics and Automation,1994, 10(2):99-111.
  • 9Ho Y C, Sreenivas R S,Vakili P. Ordinal optimization in DEDS[J]. Journal of Discrete Event Dynamic Systems, 1992, 2:61-68.
  • 10T W Edward Lau, Y C Ho. Universal alignment probabilities and subset selection for ordinal optimization[J].Journal of Optimization Theory and Applications, 1997, 93(3) : 455-489.

共引文献28

同被引文献43

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部