期刊文献+

带等式状态约束的集合卡尔曼滤波算法 被引量:3

Ensemble Kalman filter with state equality constraints
原文传递
导出
摘要 对含等式状态约束的非线性系统状态估计问题,本文考虑将集合卡尔曼滤波算法与估计投影方法结合,分别对每个状态粒子和加权平均后的状态估计向量使用估计投影方法,得到两种新的带约束的状态估计算法.实验表明,与粒子滤波和不带约束的集合卡尔曼滤波相比,新算法的估计精度有所提高. For the problem of state estimation for nonlinear systems with state equality constraints, the method that combines ensemble Kalman filter with estimate projection approaches is presented. We de- rive two new state estimation algorithms with constraints, by using estimate projection method for each particle of state estimation and state estimation vector after calculating weighted average respectively. The simulation shows that the new algorithms perform better in terms of estimation accuracy, compa- ring to particle filter and unconstrained ensemble Kalman filter.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期958-962,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61374027) 数学地质四川省重点实验室开放基金资助项目(scsxdz2011006)
关键词 非线性系统 集合卡尔曼滤波 估计投影 状态约束 Keywords. Nonlinear system Ensemble Kalman filter Estimate projection State constraints(2000 MSC 60G35)
  • 相关文献

参考文献13

  • 1Dan S. Optimal state estimation [M]. New York: John Wiley Sons, 2006.
  • 2. Dan S, Chia T L. Kalman filtering with state e- quality constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 : 128.
  • 3Dan S. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms [J]. lET Control Theory Appl, 2010, 4: 1303.
  • 4杜航原,郝燕玲,赵玉新.基于集合卡尔曼滤波的改进粒子滤波算法[J].系统工程与电子技术,2011,33(7):1653-1657. 被引量:10
  • 5李国林,黄增喜,刘怡光,杨梦龙.基于粒子滤波的机车信号灯跟踪方法[J].四川大学学报(自然科学版),2013,50(2):281-287. 被引量:2
  • 6赵玲玲,马培军,苏小红.精确测量系统的聚类准蒙特卡罗粒子滤波算法[J].信号处理,2014,30(2):127-134. 被引量:3
  • 7Geir E. The ensemble Kalman filter: theoretical formulation and practical implementation [J]. O- cean Dynamics, 2003, 53.. 343.
  • 8Stordal A S, Karlsen H A, Navdal G, et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter [J]. Computational Geosciences, 2011, 15: 293.
  • 9陈金广,李洁,高新波.等式状态约束下的粒子滤波算法[J].电子科技大学学报,2011,40(4):596-601. 被引量:3
  • 10Xu L F, Li X R. Modeling and state estimation for dynamic systems with linear equality constraints [J]. IEEE Transactions on Signal Processing, 2013, 61: 2927.

二级参考文献59

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2钟小品,薛建儒,郑南宁,平林江.基于融合策略自适应的多线索跟踪方法[J].电子与信息学报,2007,29(5):1017-1022. 被引量:21
  • 3Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans . on Automatic Control ,2000,45(5) :910 - 927.
  • 4Chen Z. Bayesian filtering: from Kalman filters to particle fil ters, and beyond]R]. Hamilton: McMaster University,2003.
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002,50(2) : 174 - 188.
  • 6Handschin J E, Mayne D Q. Monte Carlo techniques to estiate the conditional expectation in multi-stage non linear filtering[J]. International Journal Control,1968,9(5):547-559.
  • 7Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo methods for Bayesian filtering [J]. Statistics and Computing, 2000,10(3) :197 - 208.
  • 8Merwe R V, Doucet A. The unscented particle filter[EB/OL]. [2006 - 01 - 18]. http://cslu. cse. ogi. edu/publications/ps/ UPF_CSLU_talk.
  • 9Evensen G. Sequential data assimilation with a nonlinear quasi geostrophie model using Monte Carlo methods to forecast error statistics[J]. Geophys,1994,99(C5):10. 143-10.162.
  • 10Mandel J, Beezley J D. An ensemble Kalman particle predictor corrector filter for non-gaussian data assimilation [C]//Proc. of the 9th International Conference on Computational Science, 2009:470 - 478.

共引文献13

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部