期刊文献+

无阻尼弹跳球模型发生完整震颤的条件

Complete chattering behavior of elastic bouncing ball
原文传递
导出
摘要 本文讨论了无阻尼弹跳球模型的完整震颤现象.作者利用中值定理给出了无阻尼弹跳球模型在反弹系数分别趋于0和趋于1时发生完整震颤时系统参数与初始值所满足的充分条件. In this paper we discuss the complete chattering behavior of an elastic bouncing balldamping on a vibrating platform. The dynamical equations of the model are presented as a twosional map and the notion of complete chattering is given. Then by using the mean value theorobtain sufficient conditions in terms of parameters and initial values of the system under which cchattering occurs as the restitution coefficient approaches 0 and 1 respectively.
作者 郁佳
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期980-984,共5页 Journal of Sichuan University(Natural Science Edition)
基金 中央高校基本科研业务费专项基金资助(2010SCU21005)
关键词 分段光滑动力系统 弹跳球 震颤 中值定理 Piecewise smooth system Bouncing ball Chattering Mean value theoremwithout dimen-em, weompete
  • 相关文献

参考文献13

  • 1杜文举,俞建宁,张建刚,安新磊.一个新混沌系统的Hopf分岔分析及其电路实现[J].四川大学学报(自然科学版),2013,50(5):1025-1031. 被引量:8
  • 2胡楠.带多个切换的Filippov系统极限环在扰动下的保持性[J].四川大学学报(自然科学版),2013,50(4):698-702. 被引量:3
  • 3Demeio L, Lenci S. Asymptotic analysis of chatte- ring oscillations for an impacting inverted pendu- lum [J]. Quart J of Mech App Math, 2006, 59 (3) : 419.
  • 4Bernardo M D, Budd C J, Champneys A R, Kowalezyk P. Pieeewise-smooth dynamical sys- tems., theory and applications [M]. London.. Springer-Verlag, 2008.
  • 5Guckenmer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields [M]. New York: SpringepVerlag, 1983.
  • 6Budd C, Dux F. Chattering and related behaviour in impact oscillators [J]. Phil Trans Royal Soc London: Ser A, 1994, 347.. 365.
  • 7Fermi E. On the origin of the cosmic radiation [J]. PhysRev, 1949, 75: 1169.
  • 8Luck J M, Mehta A. Bouncing ball with a finite restitution., chattering, locking, and chaos [J]. Phys Rev E, 1993, 48.. 3988.
  • 9Barroso J J, Carneiro M V, Macao E E N. Bounc- ing ball problem: stability of the periodic modes [J]. Phys Rev E, 2009, 79: 026206.
  • 10Vogel S, Linz S ]. Regular and chaotic dynamics in bouncing bali models EJ]. Inter J Bifur Chaos, 2011, 21: 869.

二级参考文献21

  • 1王发强,刘崇新.Liu混沌系统的线性反馈同步控制及电路实验的研究[J].物理学报,2006,55(10):5055-5060. 被引量:35
  • 2彭国俊.一个混沌系统的霍普夫分叉分析[J].柳州师专学报,2007,22(1):124-126. 被引量:4
  • 3AstrOm K J. Oscillations in systems with relay feed- back [J]. IMA Vol Math Appl. : Adaptive Control, Filtering, and Signal Processing, 1995, 74: 1.
  • 4Bernardo M D, Feigin M I, Hogan S J, Homer M E. Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J]. Chaos, Solitons and Fractals, 1999, 10: 1881.
  • 5Banerjee S, Verghese G. Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control [M]. New York: Wiley-IEEE Press, 2001.
  • 6Dankowicz H, Jerrellncl J. Control oI near-grazing dynamics in impact oscillators [J]. Proe R Soe Lon- don Set A, 2005, 461. 3365.
  • 7Du Z, Li Y, Zhang W. Bifucation of periodic orbits in a class of planar Filippov systems [J]. Nonlinear Analysis, 2008, 69: 3610.
  • 8Leine R I, van Campen D H. Bifurcation phenomena in non-smooth dynamical systems [J]. European Journal of Mechanics A/Solids, 2006, 25: 595.
  • 9Akhmet M U, Arugaslan D. Bifurcation of a non- smooth planar limit cycle from a vertex [J]. Nonlin- ear Analysis, 2009, 71: 2723.
  • 10Chicone C. Bifurcation of nonlinear oscillations and frequency entrainment near reasonance [J]. SIAM J Math Anal, 1992, 23: 1577.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部