期刊文献+

基于双层离散粒子群优化的智能小区车辆与家庭互动调度策略 被引量:28

A Dispatching Strategy for V2H of Intelligent Community Based on Bilayer Discrete Particle Swarm Optimization
下载PDF
导出
摘要 综合考虑电动汽车的行驶特性、电池特性等约束条件,建立了计及峰谷差、日负荷率、负荷均方差和用户电费的多目标智能小区车辆与家庭互动(vehicle to home,V2H)调度策略。为求解该策略,提出双层离散粒子群算法优化V2H调度模型,以解决智能优化算法难以求解含等式约束方程的问题。第1层优化通过离散粒子群算法求解满足所有约束条件的单辆电动汽车充放电计划可行解,第2层优化采用基本粒子群算法迭代优化V2H调度模型。对无序充电、有序充电调度、V2H调度模式以及不同用户响应度的V2H调度策略进行仿真分析,结果表明:V2H调度在减小峰谷差、负荷波动、提升日负荷率方面的作用最显著,与无序充电相比用户电费下降1/3以上;随着用户对V2H调度策略响应度提高,负荷特性改善越明显,但是V2H调度的车均电费会增加。 Considering driving characteristics and battery characteristics, this paper proposed a dispatching strategy taking account of valley-peak difference, daily load factor, mean-square deviation of load and electricity of users. Since intelligent optimization algorithms can't appropriately solve problem with equation constraints, a bilayer discrete particle swarm optimization is proposed. On the first layer, charging and discharging plan per electric vehicle satisfying all constrains is made with discrete particle swarm optimization; on the second layer, basic discrete particle swarm optimization is applied to optimize model of vehicle to home (V2H) dispatching strategy. Daily load and electricity are analyzed in uncoordinated and coordinated charging modes, V2H mode under different responsiveness of users to V2H dispatching strategy. It is concluded that V2H dispatching strategy could in most extent reduce valley-peak difference, load fluctuations and improve daily load factor. Electricity of V2H mode falls more than 1/3 than that of uncoordinated charging mode; and the higher responsiveness of users to V2H dispatching strategy is, the better load characteristics will be, but the fare per vehicle in V2H dispatching will be higher.
出处 《电网技术》 EI CSCD 北大核心 2015年第10期2690-2696,共7页 Power System Technology
基金 国家自然科学基金青年基金(51207130)~~
关键词 电动汽车 车辆与家庭互动 调度策略 双层离散粒子群算法 electric vehicle V2H dispatching strategy bilayer discrete particle swarm optimization algorithm
  • 相关文献

参考文献20

二级参考文献271

  • 1王震坡,孙逢春.锂离子动力电池特性研究[J].北京理工大学学报,2004,24(12):1053-1057. 被引量:41
  • 2赵娟,谭忠富,李强.我国峰谷分时电价的状况分析[J].现代电力,2005,22(2):82-85. 被引量:55
  • 3王淑芬,万仲平,樊恒,肖昌育,黄要桂.基于二层规划的无功优化模型及其混合算法[J].电网技术,2005,29(9):22-25. 被引量:25
  • 4周祖德,徐超.全CMOS三段式锂电池充电器设计[J].武汉理工大学学报,2006,28(4):109-111. 被引量:8
  • 5王震坡,孙逢春,林程.电动公交客车充电站容量需求预测与仿真[J].北京理工大学学报,2006,26(12):1061-1064. 被引量:24
  • 6中华人民共和国国家统计局.2009年国民经济和社会发展统计公报[EB/OL].(2010-02-25)[2010-03-02].http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_402622945.htm.
  • 7Adolfo P, Biagio C. The introduction of electric vehicles in the private fleet: potential impact on the electric supply system and on the environment[J]. Italy EnergyPolicy, 2010, 38(8): 4549-4561.
  • 8Axsen J, Kurani K. Anticipating plug-in hybrid vehicle energy impacts in California.- constructing consumer-informed recharge profiles[J]. Transportation Research, 2010, 15(4): 212-219.
  • 9Putrus G, Suwanapingkarl A, Johnston P. Impact of electric vehicles on power distribution networks[C]//IEEE Vehicle Power and Propulsion Conference, Dearborn, USA, 2009: 827-832.
  • 10Wynne J. Impact of plug-in hybrid electric vehicles on California's electricity grid[D]. North Carolina: Nicholas School of the Environment of Duke University, 2009.

共引文献1285

同被引文献323

引证文献28

二级引证文献233

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部