期刊文献+

基于PSO-NGM模型的电力电子电路故障预测方法

Research on Fault Prediction Method of Power Electronic Circuits Based on Particle Swarm Optimization Non-homogenous Grey Model
下载PDF
导出
摘要 针对现有电力电子电路故障预测技术的不足,提出了将电路特征性能参数和粒子群非齐次灰色模型PSO-NGM(particle swarm optimization non-homogenous grey model)模型结合,对电力电子电路进行故障预测。以Buck-Boost电路为例,选择电路输出电压作为监测信号,提取输出电压平均值和纹波值作为电路特征性能参数,并利用PSO-NGM预测模型实现故障预测。实验结果表明,利用PSO-NGM对电路输出平均电压和输出纹波电压的预测相对误差很小,能够跟踪故障特征性能参数的变化趋势,有效实现电力电子电路故障预测。 Aiming at the issue existing in the fault prediction technique of power electronic circuits, this paper proposes that the char- acteristic parameter data is used with the particle swarm optimization non-homogenous grey model(PSO-NGM) to predict the power electronic circuits failure. The Buck-Boost converter circuit is taken as an example to predict its failure,The output voltage is selected as monitoring signal and the average voltage and ripple voltage are extracted as characteristic parameters, then the PSO-NGM algorithm is used to predict Buck-Boost converter circuit. The experimental results show that using the PSO-NGM algorithm to predict the average voltage and ripple voltage, its error is smaller. The new method can be used to trace the characteristic parameter trend and predic the failure of power electronic circuits effectively.
出处 《机械制造与自动化》 2015年第5期155-158,共4页 Machine Building & Automation
关键词 电力电子电路 故障预测 特征性能参数 粒子群非齐次灰色模型 power electronic circuits fault prediction characteristic parameter particle swarm optimization non-homogenous grey model
  • 相关文献

参考文献10

  • 1Wu W, Hu J, Zhang J. Prognostics of Machine Health Condition using an Improved ARIMA-based Prediction method [ C ] : IEEE, 2007 : 1062-1067.
  • 2李瑞莹,康锐.基于ARMA模型的故障率预测方法研究[J].系统工程与电子技术,2008,30(8):1588-1591. 被引量:76
  • 3Yang G,Wu X. Fault prediction of ship machinery based on gray neural network model[ C ] : IEEE ,2007 : 1063-1066.
  • 4Goebel KSaha B, Saxena A, et al. Prognostics in battery health management [ J ]. Instrumentation & Measurement Magazine, IEEE ,2008,11(4) :33-40.
  • 5唐阳山,方媛,白艳,窦凯.基于蚁群算法的交通出行生成预测方法的研究及应用[J].辽宁工业大学学报(自然科学版),2009,29(2):108-110. 被引量:5
  • 6Wang Q, Zhang S, Kang R. Research of small samples avionics prognostics based on Support Vector Machine [ C ], Prognostics and System Health Management Conference ( PHM-Shenzhen ), 2011,(11) :1-5.
  • 7Gu J,Vichare N, Ayyub B, et al. Application of Grey Prediction Model for Failure Prognostics of Electronics [ J ]. International Journal of Performability Engineering,2010,6 ( 5 ) :435.
  • 8Camci F. System Maintenance Scheduling With Prognostics Infor- mation Using Genetic Algorithm[ J ]. Reliability, IEEE Transac- tions on,2009,58(3) :539-552.
  • 9Liu J, Wang W, Ma F. A regularized auxiliary particle filtering approach for system state estimation and battery life prediction [ J ]Smart Materials and Structures,2011,20:075021.
  • 10崔杰,党耀国,刘思峰.一种新的灰色预测模型及其建模机理[J].控制与决策,2009,24(11):1702-1706. 被引量:86

二级参考文献36

共引文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部