期刊文献+

Cu@Co纳米颗粒合成及催化氨硼烷水解放氢性能 被引量:8

Synthesis of Cu@Co core-shell nanoparticles for the catalytic hydrolysis of ammonia borane
原文传递
导出
摘要 以Na BH4为还原剂合成了具有核壳结构的Cu@Co纳米颗粒,研究了其催化氨硼烷水解放氢性能。结果表明,Cu和Co的比例不同,Cu@Co纳米颗粒的催化活性也不同,其中Cu0.2@Co0.8的催化活性最高,室温下最大放氢速率达1364 m L min-1 g-1,活化能为59.1k J mol-1。Cu0.2@Co0.8催化氨硼烷水解反应对催化剂浓度是一级反应,对氨硼烷浓度为零级反应。Cu@Co核壳结构在催化反应中比Cu Co合金能够提供更多的反应活性位点,而且单质铜和钴之间存在的协同作用和电子效应在提高催化性能方面起着关键作用。 Non - noble metal Cu@ Co core - shell nanoparticles (NPs) containing a Cu core and a Co shell were synthesized by a facile chemical reduction method. In a,ddition, the catalytic performance for hydrolysis of ammonia borane (AB) was investigated. The results show that the catalytic activity of Cu@ Co NPs depend on the ratios of copper and cobalt. Among them, Cu0.2@ Co0.8 showed the best catalytic activity, with a high hydrogen generation rate of 1364 mL min^-1g^-1 at 298 K and the lower active energy of 59.1 kJ mol^-1. The dehydrogenation kinetic studies indicate that the hydrolysis of AB catalyzed by Cu0.2 @ Coo. s is first order with respect to the catalyst concentration, and it is zero - order with respect to the concentration of AB. Cu@ Co core shell nanoparticles provide more active sites on the surface to facilitate the catalytic reaction than CuCo alloy. Furthermore, the synergetic interaction and electronic effect between Cu and Co in Cu0.2@ Co0.8 play a critical role in the enhanced catalytic activity.
出处 《功能材料与器件学报》 CAS 2015年第4期7-12,共6页 Journal of Functional Materials and Devices
基金 863计划(2012AA051503 2012AA051901) 国家自然科学基金(51271094 51371100) 天津科技计划(12JCQNJC03900 13JCZDJC26500) 先进能源材料化学"111计划"(B12015)资助
关键词 核壳结构 Cu@Co纳米颗粒 氨硼烷 水解 core - shell structure Cu@ Co nanoparticles ammonia borane hydrolysis
  • 相关文献

参考文献27

  • 1Satyapal S, Petrovic J, Read C, et al. The U.S. depart- ment of energy's national hydrogen storage project: progress towards meeting hydrogen - powered vehicle requirements [J]. Catal. Today, 2007, 120:246-256.
  • 2陶占良,彭博,梁静,程方益,陈军.高密度储氢材料研究进展[J].中国材料进展,2009,28(7):26-40. 被引量:27
  • 3吴国涛,陈维东,熊智涛.设计新型高容量储氢材料[J].自然杂志,2011,33(1):27-30. 被引量:7
  • 4Stephens F H, Pons V, Baker R T. Ammonia - borane : the hydrogen source par excellence? [ J]. Dalton Trans, 2007, 25 : 2613 - 2626.
  • 5Staubitz A, Robertson A P M, Manners I. Ammonia - bo- rane and related compounds as dihydrogen sources [ J ]. Chem. Rev. , 2010, 110:4079-4124.
  • 6Obrovac M N, ChristensemL. High and rapid hydrogen re- lease from thermolysis of ammonia borane near PEM fuel cell operating temperatures [ J]. Int. J. Hydrogen Energy, 2012, 37(3) : 2407 -2711.
  • 7Karahan S, Zahmakiran M, Ozkar S. A facile one - step synthesis of polymer supported rhodium nanoparticles in or- ganic medium and their catalytic performance in the dehy- drogenation of ammonia - borane [ J ]. Chem. Commun. , 2012, 48:1180 - 1182.
  • 8Wang P, Kang X D. Hydrogen - rich boron - containing materials for hydrogen storage [ J ]. Dalton Trans. , 2008, 40 : 5400 - 5413.
  • 9Toche F, Chiriac R, Demirci U B, et al. Ammonia borane thermolytic decomposition in the presence of metal (11) chlorides [J]. Int. J. Hydrogen Energy, 2012, 37:6749 - 6755.
  • 10Metin O, Mazumder V, Ozkar S, et al. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehy- drogenation of ammonia borane [ J ]. J. Am. Chem. Soc. , 2010, 132:1468-1469.

二级参考文献136

  • 1许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210. 被引量:86
  • 2Vajo J J, Skeith S L, Mertens F. Reversible Storage of Hydrogen in Destabilized LiBH4 [ J]. J Phys Chem B, 2005, 109: 3 719 -3 722.
  • 3Wagemans R W P, Van Lenthe J H, De Jongh P E. Hydrogen Storage in Magnesium Clusters: Quantum Chemical study[ J]. J Am Chem Soc, 2005, 127:16 675 - 16 680.
  • 4Vajo J J, Olson G L. Hydrogen Storage in Destabilized Chemical Systems[ J]. Scr Mater, 2007, 56 : 829 - 834.
  • 5Nakamori Y, Miwa K, Ninomiya A, et al. Correlation between Thermodynamical Stabilities of Metal Borohydrides and Cation Electronegativities: First-Principles Calculations and Experiments [J]. Phys Rev B. 2006, 74:045 126.
  • 6Nakamori Y, Li H W, Kikuchi K, et al. Thermodynamical Stabilities of Metal-Borohydrides [ J ] . J Alloys Compd, 2007, 446/447 : 296 - 300.
  • 7Yin L C, Wang P, Fang Z Z, Cheng H M. Thermodynamically Tuning LiBH4 by Fluorine Anion Doping for Hydrogen Storage : a Density Functional Study [ J]. Chem Phys Lett, 2008, 450: 318 -321.
  • 8Pena-Alonso R, Sicurelli A, Callone E, et al. A Pieoscale Catalyst for Hydrogen Generation from NaBH4 for Fuel Cell[J]. J Power Sources, 2007, 165 : 315 -323.
  • 9Kim S J, Lee J, Kong K Y, et al. Hydrogen Generation System using Sodium Borohydride for Operation of a 400 W-Scale Polymer Electrolyte Fuel Cell Stack [ J ]. J Power Sources, 2007, 170: 412-418.
  • 10Patel N, Guella G, Kale A, et al. Thin Films of Co-B Prepared by Pulsed Laser Deposition as Efficient Catalysts in Hydrogen Producing Reactions[J]. Appl CatalA, 2007, 323:18-24.

共引文献31

同被引文献59

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部