期刊文献+

纤维素基离子凝胶聚合物电解质的制备与性能 被引量:3

Preparation and Properties of In Situ Crosslinking Cellulose-Based Ionogels
下载PDF
导出
摘要 通过原位交联木浆纤维素/1-乙基-3-甲基咪唑醋酸盐溶液制备了纤维素基离子凝胶聚合物电解质,并采用扫描电子显微镜(SEM)、流变、力学拉伸及交流阻抗等测试,研究了纤维素基离子凝胶的形貌﹑力学性能和电化学性能。SEM结果表明,所得交联型离子凝胶具有纳米多孔网状结构。流变结果表明高温下离子凝胶具有很好的弹性,200℃时的弹性模量为1.7×105 Pa。电学性能测试结果表明室温下离子凝胶具有很高电导率,达到6.3×10-3 S/cm,且电导率随温度的升高而增大。力学性能测试结果显示离子凝胶具有良好的力学强度,其拉伸强度达9.6 MPa。 Cellulose-based ionogels were successfully prepared from the wood pulp cellulose/1-ethyl-3- methylimidazole acetate solution by in situ crosslinking, and their morphology, mechanical, electrochemical properties were investigated via scanning electron microscope (SEM), rheology, tensile tests, and AC impedance. The SEM results indicate that the obtained crosslinked cellulose-based ionogels have nanoporous mesh architecture, which can? absorb large amounts of ionic liquid. The theological results suggest that the storage modulus of the ionogels can reach 106 Pa at 25 ℃ and 1.7 × 10^5 Pa at 200 ℃. Furthermore, the ionogels have good mechanical properties, the tensile strength can reach 9.6 MPa and the elongation at break is 170.2 % for 7 %-ionogels. The ionic conductivity of the ionogels at ambient temperature is 6.3 × 10- 3 S/era and it increases with increasing temperature. The above results demonstrate that this novel ionogels are promising for application as gel polymer electrolytes (GPE) in electrochemical area.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2015年第9期153-156,共4页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(21304029) 高等学校博士点基金(20121301120004) 河北省自然科学基金资助项目(B2013201117) 中国博士后科学基金(2014M551040) 河北省教育厅优秀青年基金(YQ2014025)
关键词 纤维素 离子凝胶 凝胶聚合物电解质 离子电导率 eellulose ionogel gel polymer electrolyt ionic conductivity
  • 相关文献

参考文献8

  • 1Le Bideau j, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials[j]. Chem. Soc. Rev., 2011, 40: 907-925.
  • 2Lee K H, Kang M S, Zhang S, et al. "Cut and Stick" rubbery ion gels as high capacitance gate dielectrics[J]. Adv. Mater., 2012,24 : 4457-4462.
  • 3Zhang S, Lee K. H, Sun j, et al. Ionic conductivity, and materials design considerations for poly (styrene-b-ethylene oxide-b-styrene )- based ion gel electrolytes[J]. Macromolecules, 2011, 44: 8981- 8989.
  • 4N&mze M, Le Bideau J, Gaveau P, et al. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks[J]. Chem. Mater., 2006, 18: 3931-3936.
  • 5Song H Z, Luo Z Q, Zhao H C, et al. High tensile strength and high ionic conductivity bionanocomposite ionogels 19repared by gelation of cellulose/ionic liquid solutions with nano-silica [ J ]. R,SC Adv., 2013, 3: 11665-11675.
  • 6蒋晶,苏光耀.离子液体聚合物电解质的研究进展[J].电池,2005,35(6):474-476. 被引量:11
  • 7Moon H C, Lodge T P, Frisbie C D. Solution-processable eleetrochemiluminescent ion gels for flexible, low-vohage, emissive displays on plastic[J]. J, Am. Chem. Soc., 2014, 136: 3705- 3712.
  • 8闵思佳,陈芳芳,吴豪翔.环氧化合物与丝素蛋白化学交联凝胶的结构[J].高等学校化学学报,2005,26(5):964-967. 被引量:17

二级参考文献32

  • 1Altman Gregory H.. Diaz Frank, Jakuba Caroline et al.. Biomaterials[J]. 2003, 24(3): 401-416.
  • 2Unger Ronald E., Wolf Michael, Peters Kirsten et al.. Biomaterials[J]. 2004, 25(6): 1069-1075.
  • 3Putthanarat S., Zarkoob S., M agoshi J. et al.. Polymer[J]. 2002, 43(12): 3405-3413.
  • 4Kweon H. Y.. Journal of Applied Polymer Science[J]. 2001, 80: 1848-1852.
  • 5Hino Tomoaki, Tanimoto Masao, Shimabayashi Saburo. Journal of Colloid and Interface Science[J]. 2003, 266(1): 68-73.
  • 6Kiyoshi Hirabayashi. SEN-I GAKKAISHI[J]. 1995, 45(2): 263-265.
  • 7Masuhiro Tsukada. JP 2507885[P]. 1996.
  • 8Akamoto M., Kazisugi K., Shiozaki H. et al.. SEN-I GAKKAISHI[J]. 1976, 32: 335-340.
  • 9Asakura T., Yao J.. Protein Science[J]. 2002, 11: 2706-2713.
  • 10Marc D,Susan K C,Grant P.High-temperature proton conducting membranes base on perfluorinated ionomer membrane-ionic liquid composites[J].J Eletrochem Soc,2000,147(1):34-37.

共引文献26

同被引文献14

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部