期刊文献+

用循环极化曲线研究Al和铝合金的点蚀行为 被引量:16

Characterization of Pitting Behavior of Pure Al and Al-7Zn-0.1Sn-0.015Ga Alloy by Cyclic Polarization Technique
原文传递
导出
摘要 通过循环极化确定纯Al和Al-7Zn-0.1Sn-0.015Ga(质量分数,%)合金在3.5%Na Cl溶液中的自腐蚀电位Ecorr、点蚀电位Epit、点蚀转变电位Eptp和保护电位Erp,并通过Al和铝合金在这些特征电位的点蚀形貌研究了它们的点蚀行为及点蚀扩展机理。结果表明:在点蚀电位时开始出现点蚀坑,随着电位升高点蚀坑迅速向横向和纵向扩展直至保护电位;纯Al的点蚀坑为窄而深的方形点蚀形貌,蚀坑内部为粗糙的结晶状结构,且表面出现明显的丝状腐蚀。Al-7Zn-0.1Sn-0.015Ga合金的点蚀形貌为宽而浅的圆形腐蚀坑,蚀坑内部比较光滑,且丝状腐蚀消失。合金元素能明显活化合金,降低点蚀坑深度,改善其腐蚀形貌。 Pitting corrosion behavior of pure Al and Al-7Zn-0.1 Sn-0.015Ga (mass fraction, %) alloy in 3.5%NaCl solution was studied by cyclic polarization technique in terms of characteristics of corrosion potential Ecorr, pitting potential Epit, pitting transition potential Eptp and repassivation potential Erp. While the corrosion morphology of them was investigated by scanning electron microscopy (SEM). The results showed that pits initiate at the pitting potential, they grow quickly both in depth and diameter with the increasing potential until the protective potential. Pits formed on pure Al are narrow and deep square pits, the inner wall of which exhibits rough crystalline structure with a fila- ment corrosion like surface. While pits on Al-7Zn-0.1Sn-0.015Ga alloy are wide and shallow circular pits, with relatively smooth wall but without the filament corrosion like feature. Alloying elements can significantly activate the alloy, reduce its pitting depth, and thus alter the corrosion morphology.
出处 《腐蚀科学与防护技术》 CAS CSCD 北大核心 2015年第5期449-453,共5页 Corrosion Science and Protection Technology
基金 河南省重点攻关项目(132102210119) 河南省教育厅重点项目(14A430001) 洛阳市科技攻关项目(1301001A)资助
关键词 铝合金 牺牲阳极 循环极化曲线 点蚀行为 aluminum alloy, sacrificial anode, cyclic polarization technique, pitting corrosion
  • 相关文献

参考文献12

  • 1董超芳,安英辉,李晓刚,生海,肖葵.7A04铝合金在海洋大气环境中初期腐蚀的电化学特性[J].中国有色金属学报,2009,19(2):346-352. 被引量:69
  • 2贺俊光,文九巴,周旭东,王国伟.冷变形对铝空气电池用阳极电化学性能的影响[J].腐蚀科学与防护技术,2013,25(3):229-232. 被引量:3
  • 3Yasuda M, Weinberg F, Tromans D. Pitting corrosion of AI and A1- Cu single crystals [J]. J. Electrochem. Soc., 1990, 137(12): 3708.
  • 4Monica T, Stethno P T. Study of Al alloy corrosion in neutral NaCI by the pitting scan technique [J]. Mater. Chem. Phys., 2010, 121(3): 523.
  • 5Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride con- centration on pitting corrosion of AA6061 aluminum alloy [J]. Cor- ros. Sci., 2008, 50(7): 1841.
  • 6Brunner J G, May J, Hoppel H W, et al. Localized corrosion of ultra- fine-grained A1-Mg model alloys [J]. Electrochim. Acta, 2010, 55 (6): 1966.
  • 7He J G, Wen J B, Li X D. Corrosion behavior of A1-Zn-Sn-Ga alloy in NaCI solution [J]. J. Wuhan Univ. Technol. (Mater.Sci.Edi.), 2012, 27(4): 644.
  • 8宋诗哲,唐子龙.工业纯铝在3.5%NaCl溶液中的电化学阻抗谱分析[J].中国腐蚀与防护学报,1996,16(2):127-132. 被引量:39
  • 9Song F X, Zhang X M, Liu S D, et al. Anisotropy of localized corro- sion in 7050 T7451 A1 alloy thick plate [J]. Trans. Nonferrous Met. Soc. China, 2013, 23(9): 2483.
  • 10Newman R C. Local chemistry considerations in the tunneling cor- rosion of aluminum [J]. Corros. Sci., 1995, 37(3): 527.

二级参考文献54

共引文献114

同被引文献158

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部