期刊文献+

一种基于数据降维的移动目标轨迹分析方法 被引量:1

An Analysis Method of Moving Object Trajectories Based on Data Dimensionality Reduction
下载PDF
导出
摘要 大数据是信息技术领域又一次颠覆性的技术革命,已在军用领域凸显潜在的应用价值。由于各类传感器广泛应用,军事系统采集到了大量移动目标的轨迹数据,但数据体量大、复杂多样且变化速度快,传统的数据分析和挖掘方法很多已不适用,难以发挥数据的效用。根据实际应用需求,论文借助大数据表示和感知的相关算法,提出了大量移动目标频繁访问的热门区域提取和轨迹相似性计算的方法,提高了计算效率,实用性较强。 Big data is another technological revolution in information technology domain ,has highlighted the potential applications in the military field .Due to the wide application of various types of sensors ,a large number of moving object trajectories has been collected .But the data is volume ,complicated and fast changing ,traditional data analysis and mining is no longer applicable in many ways .According to the actual application requirements ,with big data representation and sens‐ing algorithms ,a method of hot region extraction and similarity measures for trajectory databases is proposed ,which im‐proves the computational efficiency and practicability .
出处 《舰船电子工程》 2015年第9期35-39,74,共6页 Ship Electronic Engineering
关键词 轨迹分析 大数据表示 压缩感知 热门区域 轨迹相似性 trajectory analysis big data representation compressed sensing hot region trajectory similarity
  • 相关文献

参考文献22

二级参考文献385

  • 1詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发展,2005,42(9):1533-1537. 被引量:24
  • 2刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4Seung H S,Lee D D.The manifold ways of perception[J].Science, 2000,290 ( 5500 ) : 2268-2269.
  • 5Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation, 2003,15 ( 6 ): 1373-1396.
  • 6Tenenbaum J B,de Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000,290 (5500):2319-2323.
  • 7Roweis S,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000,290(5500) : 2323-2326.
  • 8He X,Niyogi P.Locality preserving projections[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2003: 291-299.
  • 9Yan S,Xu D,Zhang B,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 ( 1 ) : 40-51.
  • 10Chung F R K.Spectral graph theory[M].Fresno:American Mathematical Society, 1997.

共引文献3224

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部