期刊文献+

人工神经网络技术在压风控制系统中的应用研究 被引量:1

Application of Artificial Neural Network in the Wind Pressure Control System
下载PDF
导出
摘要 对工业用离心式空气压缩机中供风系统的故障诊断进行了研究,针对目前压风控制系统故障诊断方法缺乏智能性,难以实现有效的系统故障预警的缺点,引入了人工神经网络技术,并以此为核心,构建远程故障诊断专家系统模块,详细分析了神经网络技术在空气压缩机故障诊断中的应用,有效地提高了远程监控系统对压风系统故障的预判断及处理能力。 Fault diagnosis of air supply system in centrifugal air compressor for industrial is studied .Aiming at the dis‐advantages that diagnosis methods of fault in wind pressure control system is lack of intelligence ,and difficult to realize fault warning defects effectively ,the technology of artificial neural network is introduced ,and used as the core to construct remote fault diagnosis expert system module ,make a detailed analysis of the application of neural network technology in fault diag‐nosis of air compressor .It effectively improves on the compressed air system fault pre judgment and the processing ability of the remote monitoring system .
出处 《舰船电子工程》 2015年第9期147-151,共5页 Ship Electronic Engineering
关键词 远程控制 信号采集 神经网络 故障诊断 remote control signal acquisition neural network fault diagnosis
  • 相关文献

参考文献8

  • 1Emmons H W, Pearson C E, Grant H P. Compressor Surge and Stall Propagation [J]. Transactions on ASME, 2010,77 : 455-469.
  • 2Greitzer E M. Surge and Rotating Stall in Axial Flow Compressors, Part I: Theoretical Compression Sys- tem Model[J]. Journal of Engineering for Power, 2011,98(2) : 1990-1998.
  • 3Hansen K E, Jorgensen P, Larsen P S. Experimental and Theoretical Study of Surge in a Small Centrifugal Compressor[J]. Fluid Engineering, 2009,103 (3) : 391- 394.
  • 4Gravdahl J T, Egeland O. Compressor Surge and Rota- ting Stall: Modeling and Control[M]. Berlin: Spring- er,2011:33-36.
  • 5Simon J S, Valavani L, Epstein A H, et al. Evaluation of Approaches to Active Compressor Surge Stabilization [J]. Journal of Turbomachinery, 2010,115 ( 1 ) : 57-67.
  • 6Yao X, et al. A New Evolving System for Evolving Ar- tificial Neural Networks[M]. IEEE Trans NN,2012,8 (2) ; 694-698.
  • 7Riedmiller Martin, Braun Heinrich. A direct adaptive method for faster back propagation learning: The RPROP algorithm[J]. Proceedings of the IEEE Inter- national Conference on Neural Networks, 2013 (9) : 43- 45.
  • 8Behera Lon adaptive learning rate that guarantees con- vergence in feed forward networks[J]. IEEE Transac- tions on Neural Networks, 2010(6) : 81-83.

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部