期刊文献+

一种求解KdV-Burgers方程的迎风超紧致差分格式

An upwind super compact difference scheme for KdV-Burgers equation
下载PDF
导出
摘要 提出了一种迎风超紧致差分格式(USCD),利用Fourier分析方法对该格式的数值特性进行了分析,并与其他的迎风差分格式和迎风紧致差分格式做了对比.结果反映出USCD具有更好的分辨率和更低的耗散.通过对Burgers方程和KdV-Burgers方程的数值模分析,进一步证实了USCD格式有更高的精度和对长时间演化问题的有效性. In this paper , an upwind super compact difference scheme (USCD ) is proposed . The numerical characteristics of USCD are analyzed by using Fourier analysis , and compared with other upwind difference schemes and upwind compact difference schemes . According to analysis , it is found that USCD has better resolution and lower dissipation . Numerical solutions of the Burgers and KdV‐Burgers equations show that the USCD scheme has high‐order accuracy and is effective for long time evolution .
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期38-42,49,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10875098)
关键词 迎风超紧致差分格式(USCD) KDV-BURGERS方程 数值解 upwind super compact difference scheme(USCD) KdV-Burgers equation numerical solutions
  • 相关文献

参考文献11

  • 1LELE S K, Compact finite difference schemes with spectral-l~ike resolution[J]. J Comput Phys, 1992, 103: 16.
  • 2FU D X, MA Y W, LIU H. Upwind compact schemes and aplications [ C]//Proceedings of 5th International Symposium on CFD. Sendai: Japan Society of Computational Fluid Dynamics, 1993: 104.
  • 3FU D X, MA Y W. A high order accuracy difference scheme for complex flow fields [J]. d ComputPhys, 1997, 134: 1.
  • 4CHU P C, FAN C W. A three-point combined compact difference scheme [J]. J Comput Phys, 1998, 140(2): 370.
  • 5CHU P C, FAN C W. A three-point sixth-order staggered combined compact difference scheme[J]. Mathematical computer modeling, 2000, 32: 323.
  • 6林东,詹杰民.浅水方程组合型超紧致差分格式[J].计算力学学报,2008,25(6):791-796. 被引量:9
  • 7KIM J W, LEE D J. Optimized compact finite difference schemes with maximum resolution [J]. AIAAJournal, 1996, 34(5): 887.
  • 8孙建安,陈继宇,刘万海,豆福全,张涛锋,石玉仁.用调和微分求积法数值求解Burgers方程[J].西北师范大学学报(自然科学版),2009,45(5):34-38. 被引量:5
  • 9COLE J D. On a quasi-linear parabolic equation occurring in aerodynamics[J]. Appl Math Comput, 2005, 170: 859.
  • 10DOGAN A. Numerical solution of RLW equation using linear finite elements within Galerkin's method [J]. Applied Mathematical Modelling, 2002, 26 771.

二级参考文献31

  • 1LELE S K. Compact finite difference schemes with spectral-like resolution[J]. J Comput Phys, 1992, 103 : 16-42.
  • 2CARPENTER H, GOTFLIEB D, ABARBANEL S. The stability of numerical boundary treatment for compact high-order finite-difference schemes [J]. J Comput Phys, 1993,108 : 272-295.
  • 3CARPENTER H, GOTFLIEB D, ABARBANE i. Time-stable boundary condition for finite difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes[J]. J Comput Phys, 1994,111:220-236.
  • 4KRISHNAM Mahesh. A family of high order finite difference schemes with good spectral resolution[J]. J Comput Phys, 1998,145 : 332-358.
  • 5PETER C Chu, Chenwu Fan. A three point combined compact difference scheme [J]. J Comput Phys, 1998,140 : 370-399.
  • 6PETER C. Chu, Chenwu Fan. A three point sixth-order staggered combined compact difference scheme [J]. Mathematical and Computer Modeling, 2000, 32:323-340.
  • 7Peter Chu, Chenwu Fan. A three-point sixth order nonuniform combined compact difference scheme[J]. J Comput Phys, 1999,148 : 663-674.
  • 8FU D X, MAY W. A high order accuracy difference scheme[J]. J Comput Phys, 1997,134:1-15.
  • 9MAY W, FU D X. Super compact finite difference methods with uniform and nonuniform grid system [A]. Proceedings of 6^th International Symposium on Computational Fluid Dynamics[C]. Lake Tahoe,Nevada, 1995.
  • 10Glaudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang, Spectral Methods in Fluid Dynamics[M]. Beijing: Springer-Verlag, 1988.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部