期刊文献+

不同失稳判据下喷射沉积超高强铝合金热变形失稳区域分布及演变特点

Distribution and evolution characteristics of thermal deformation instability regions for spray deposited ultra high strength aluminum alloy based on various instability criteria
下载PDF
导出
摘要 基于热模拟试验获得超高强铝合金真应力-真应变数据的基础上,采用Prasad、murty、Gegel和Malas失稳准则分别构建不同真应变下的试验合金失稳图,并分析不同失稳准的失稳区域分布及演变特点。结果表明:所有判据下的失稳图中,高温高应变速率区域是失稳区高频出现区域;随着真应变增大,呈大面积离散状分布的Prasad失稳区域不断减小;呈离散状分布的murty判据下的失稳区域,在中高温和中应变速率区域产生新的失稳区域,区域范围呈增大趋势;随着真应变增大,Gegel和Malas判据下失稳区域分布及演变特点相似,低温低应变速率下的失稳区域均呈增大趋势,中高温高应变速率区域对应的失稳区域逐渐呈减小趋势。 Based on the acquired true stress-true strain data of ultra high strength aluminum by thermal simulation, the four instability criteria of Prasad, Murty, Gegel and Malas were used to establish the instability maps under d'ifferent true strain. Distribution and evolution characteristics of thermal deformation instability re^ions were studied. The results show that instability domains are located at higher strain rate and higher temperature regions. As the true strain increases, the instability domains with discrete distribution in large area become smaller by Prasad criteria. By Murty, the instability regions are distributed under the discrete state. A new instability region creates at middle higher temperature and strain rate and becomes larger. As the true strain increases, the distribution and evolution characteristics of instability regions by Gegel and Malas are similar. The areas of instability regions show an increase tendency at lower temperature and lower strain rate and show a decrease tendency at middle higher temperature and higher strain rate doniains.
出处 《兵器材料科学与工程》 CAS CSCD 北大核心 2015年第5期97-102,共6页 Ordnance Material Science and Engineering
基金 宁波市自然科学基金(2014A6100061)
关键词 失稳判据 超高强铝合金 失稳图 失稳区域 热变形 instability criteria ultra high strength aluminum alloy instability maps instability regions hot deformation
  • 相关文献

参考文献2

二级参考文献38

  • 1张红钢,何勇,刘雪峰,谢建新.Ni-Ti形状记忆合金热压缩变形行为及本构关系[J].金属学报,2007,43(9):930-936. 被引量:23
  • 2Otuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys [ J ]. Progress in Materials Sci- ence, 2005, 50(5): 511.
  • 3Jiang S Y, Zhang Y Q, Zhao Y N, Tang M, Yi W L. Constitutive behavior of Ni-Ti shape memory alloy under hot compression [J]. J. Cent. South Univ., 2013, 20 (1): 24.
  • 4Morakabati M, Aboutalebi M, Kheirandish Sh, Taheri A Karimi, Abbasi S M. High temperature deformation and processing map of a NiTi intermetallic alloy [ J ]. In- termetallics, 2011, 19(10): 1399.
  • 5Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, Barker D R. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans. A, 1984, 15(10): 1883.
  • 6Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working [ J ]. Journal of Materials Processing Technology, 2003, 142(1) : 289.
  • 7Prasad Y V R K, Seahaeharyulu T. Modeling of hot deformation for microstructural control [ J ]. International Materials Reviews, 1998, 43(6) : 243.
  • 8Murty S V S Narayana, Rao B Nageswara. On the de- velopment of instability criteria during hotworking with reference to IN718 [ J]. Materials Science and Engineer- ing, 1998, A254(1-2) : 76.
  • 9Malas J C, Seetharaman V. Using material behavior models to develop process control strategies [ J ]. JOM, 1992, 44(6) : 8.
  • 10X.D. Lu, Q. Deng, J.H. Du, J.L. Qu, J.Y. Zhuang, Z.Y. Zhong, J. Alloy. Compd. 477 (2009) 100-103.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部