期刊文献+

核糖核酸开关用于微生物细胞工厂的智能与精细调控 被引量:2

Intelligent and fine regulation of microbial cell factory based on riboswitches
下载PDF
导出
摘要 利用代谢工程与合成生物技术对细胞内复杂的代谢网络和调控网络进行重构和改造,以建立合成新化合物或提高目标产物产量的微生物细胞工厂是当今绿色化工技术发展的方向之一。微生物代谢途径的调控受环境和遗传的双重影响,细胞通过全局转录因子、信使分子和反馈抑制等方式响应环境变化来维持细胞的内稳态;同时细胞还受自身遗传基因线路的调控,在转录、翻译以及翻译后修饰过程中调控特定基因的表达。核糖核酸开关是一类调控基因线路表达的RNA元件,通过与金属离子、糖类衍生物、氨基酸、核酸衍生物以及辅酶等特异性配体结合发生的构象变化,从而启动或阻断m RNA的转录、翻译、拼接等过程来调控基因的表达。核糖核酸开关作为天然的生物感受器和效应器通过人工设计可成为微生物细胞工厂智能化和精细化调控的分子工具,并在化工、医药、环保、食品等领域得到广泛应用。 Construction of the microbial cell factory is one of the developmental directions of current green chemical industry. The microbial cell factory is a kind of recombined microorganism and its metabolic and regulatory pathways have been reconstructed by metabolic engineering and synthetic biology to synthetic new compounds or to improve the yield of target production. The microbial metabolic pathway is regulated by two points: environment and genetic information. The cell maintains its homeostasis by global transcription factors, messenger molecules and feedback inhibition when the circumstance is changed. Meanwhile, the cell is affected by its own genetic circulate through transcription, translation and post-translational modification to regulate the expression of target gene. The riboswitches are RNA elements which change their conformation when bind to specific ligands such as ions, sugar derivatives, amino acids, nucleic acid derivatives and coenzymes to regulate the process of transcription, translation and splicing of mRNA. The riboswitches are natural biosensors and bioeffectors which can be designed as the intelligent molecular tools to fine regulate microbial cell factories. Using riboswitches in the microbial cell factory can extend the application in the field of chemical, pharmaceutical, environmental protection and food production.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第10期3811-3819,共9页 CIESC Journal
基金 国家杰出青年科学基金项目(21425624) 国家自然科学基金面上项目(21376028 21476026)~~
关键词 核糖核酸开关 微生物细胞工厂 精细调控 生物转化 优化 代谢工程 合成生物学 riboswitch microbial cell factory fine regulation biotransformation optimization metabolic engineering synthetic biology
  • 相关文献

参考文献49

  • 1LAI ShuJuan,ZHANG Yun,LIU ShuWen,LIANG Yong,SHANG XiuLing,CHAI Xin,WEN TingYi.Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production[J].Science China(Life Sciences),2012,55(4):283-290. 被引量:15
  • 2Wu Y,Li P,Zheng P,Zhou W,Chen N,Sun J.Complete genome sequence of Corynebacterium glutamicum B253,a Chinese lysine-producing strain [J].J.Biotechnol.,2015,4(207): 10-11.
  • 3Wang N,Ni Y,Shi F.Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum [J].Biotechnol.Lett.,2015,37(7): 1473-1481.
  • 4Shi X,Chen Y,Ren H,Liu D,Zhao T,Zhao N,Ying H.Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler [J].Bioresour.Technol.,2014,174: 190-197.
  • 5Dae-Kyun Ro,Eric M Paradise,Jay D Keasling,et al.Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J].Nature,2005,440(7086): 940-943.
  • 6Patrick J Westfall,Douglas J Pitera,Jay D Keasling,et al.Production of amorphadiene in yeast,and its conversion to dihydroartemisinic acid,precursor to the antimalarial agent artemisinin [J].Proc.Natl.Acad.Sci.USA,2012,109(3): E111-E118.
  • 7Jennewein S,Park H,DeJong J M,Long R M,Bollon A P,Croteau R B.Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis [J].Biotechnol.Bioeng.,2005,89(5): 588-598.
  • 8Guo J,Zhou Y J,Hillwig M L,Huang L,et al.CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts [J].Proc.Natl.Acad.Sci.USA,2013,110(29): 12108-12113.
  • 9Gao Z X,Zhao H,Li Z M,Tan X M,Lu X F.Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria [J].Energy & Environmental Science,2012,5(12): 9857-9865.
  • 10Lan E I,Liao J C.Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide [J].Metabolic Engineering,2011,13(4): 353-363.

二级参考文献37

  • 1Furuya S. An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac Clin Nutr, 2008, 17: 312-315.
  • 2Furuya S, Makino A, Hirabayashi Y. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res Protoc, 1998, 3: 192-198.
  • 3Pizer L I, Potochny M L. Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J Bacteriol, 1964, 88: 611-619.
  • 4McNeil J B, Bognar A L, Pearlman R E. In vivo analysis of folate coenzymes and their compartmentation in Saccharomyces cerevisiae. Genetics, 1996, 142: 371-381.
  • 5Gelling C L, Piper M D W, Hong S P, et al. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. J Biol Chem, 2004, 279: 7072-7081.
  • 6Stauffer G V. Biosynthesis of serine, glycine, and one-carbon units. In: Neidhardt F C Curtiss III R, Ingraham J L, Lin E C C, et al., eds. Escherichia coli and Salmonella: Cellular and Molecular Biology.2nd ed. Washington D.C.: ASM Press, 1996. 506-513.
  • 7Marx A, deGraaf A A, Wiechert W, et al. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balanc- ing. Biotechnol Bioeng, 1996, 49: 111-129.
  • 8Peters-Wendisch P, Netzer R, Eggeling L, et al. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Appl Microbiol Biotechnol, 2002, 60: 437-441.
  • 9Netzer R, Peters-Wendisch P, Eggeling L, et al. Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glu- tamicum. Appl Environ Microbiol, 2004, 70: 7148-7155.
  • 10Haitani Y, Awano N, Yamazaki M, et al. Functional analysis of L-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett, 2006, 255: 156-163.

共引文献14

同被引文献15

  • 1Mandal M, Lee M, Barrick J E, et al. A glycine - dependent ribos- witch that uses cooperative binding to control gene expression [J]. Science,2004,306 (5694) :275 - 279.
  • 2Mellin J R, Pascale Cossart. Unexpected versatility in bacterial ri- boswitches[J]. Trends in Genetics ,2015,31 (3) : 150 - 156.
  • 3Wilson - Mitchell S N, Grundy F J, Henkin T M. Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch [J]. Nucleic Acids Res. ,2012,40 (12) : 5706 -5717.
  • 4Lynn S P, Burton W S, Donohue T J, et al. Specificity of the attenu- ation response of the threonine operon of Escherichia coli is deter- mined by the threonine and isoleucine eodons in the leader tran- script[J]. Journal of Molecular Biology, 1987,194 ( 1 ) : 59 - 69.
  • 5Yang Jina, Seo Sang Woo, Jang Sungho, et al. Synthetic RNA de- vices to expedite the evolution of metabolite - producing microbes [J]. Nature Communications,2013, (4) : 1413.
  • 6Muranaka N, Sharma V, Nomura Y, et al. An efficient platform for genetic selection and screening of gene switches in Escherichia coli [J]. Nucleic Acids Res. ,2009,37 (5) : e39.
  • 7Zhu X,Wang X,Zhang C, et al. A riboswitch sensor to determine vitamin B12 in fermented foods [J]. Journal of Food Chem. , 2015,15(175) : 523 -528.
  • 8Liu Y N, Li Qinggang, Zheng Ping, et al. Developing a high - throughput screening method for threonine overproduction based on an artificial promoter [J]. Microbial Cell Factories, 2015, 14:121.
  • 9Gardner L and Deiters A. Light - controlled synthetic gene circuits [J]. Current Opinion in Chemical Biology, 2012,16 ( 3 - 4 ) : 292 - 299.
  • 10DebRoy S, Gebbie M, Ramesh A, et al. A riboswitch - containing sRNA controls gene expression by sequestration of a response regulator [J]. Science,2014,345 (6199 ) :937 - 940.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部