期刊文献+

结构参数对布置窄缝和挡板的微混合器内流体流动和混合的影响 被引量:7

Effect of structural parameters on fluid flow and mixing characteristics in micromixer with gaps and baffles
下载PDF
导出
摘要 基于混沌对流原理设计了一种布置窄缝和挡板结构的被动式微混合器,并采用三维数值模拟和可视化实验对该微混合器内流体流动与混合特性进行了研究。窄缝和挡板的共同作用使微混合器水平面内形成了扩展涡和分离涡,垂直流动方向的截面内形成了对称的反向旋涡,多维度涡系显著提高了混合效率。窄缝和挡板的结构尺寸对流体流动和混合有重要影响。综合考虑混合强度和压降,利用场协同原理分析窄缝宽度、窄缝长度、挡板高度对微混合器综合性能的影响并得到了不同Reynolds数条件下的最优结构参数。 A passive micromixer with gaps and baffles was proposed based on the principle of chaotic mixing and the fluid flow and mixing characteristics in the micromixer were studied by three-dimensional numerical simulation and visualization experiment. Expanded vortices and separated vortices were generated in the horizontal plane and counter-rotating vortices formed in the cross-sectional plane perpendicular to the flow direction by the combination of gaps and baffles. The mixing efficiency was significantly improved by the multidirectional vortices. The geometrical parameters of gaps and baffles had great effect on the fluid flow and mixing. Based on the consideration of mixing efficiency and pressure drop, the effect of gap width, gap length and baffle height on the comprehensive performance of the micromixer was investigated by the field synergy principle. The optimal structural parameters were presented with varying Reynolds number.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第10期3857-3865,共9页 CIESC Journal
基金 国家自然科学基金项目(51176002) 国家重点基础研究发展计划项目(2011CB710704) 北京市自然科学基金项目(3142004)~~
关键词 微尺度 混合 场协同原理 结构优化 数值模拟 microscale mixing field synergy principle structural optimization numerical simulation
  • 相关文献

参考文献20

  • 1Li Y,Xu F,Liu C,Xu Y,Feng X,Liu B F.A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction [J].Analyst,2013,138: 4475-4482.
  • 2Hardt S,Drese K S,Hessel V,Sch?nfeld F.Passive micromixers for applications in the microreactor and μTAS fields [J].Microfluid.Nanofluid.,2005,1: 108-118.
  • 3Wu C Y,Tsai R T.Fluid mixing via multidirectional vortices in converging-diverging meandering microchannels with semi-elliptical side walls [J].Chem.Eng.J.,2013,217: 320-328.
  • 4Sabotin I,Tristo G,Junkar M,Valentin?i? J.Two-step design protocol for patterned groove micromixers [J].Chem.Eng.Res.Des.,2013,91: 778-788.
  • 5Xia G D,Li J,Tian X P,Zhou M Z.Analysis of flow and mixing characteristics of planar asymmetric split-and-recombine (P-SAR) micromixers with fan-shaped cavities [J].Ind.Eng.Chem.Res.,2012,51: 7816-7827.
  • 6Li J,Xia G D,Li Y F.Numerical and experimental analyses of planar asymmetric split-and-recombine micromixer with dislocation sub-channels [J].J.Chem.Technol.Biotechnol.,2013,88: 1757-1765.
  • 7Ottino J M.The Kinematics of Mixing: Stretching,Chaos,and Transport [M].New York: Cambridge University Press,1989.
  • 8Shih T R,Chung C K.A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range [J].Microfluid.Nanofluid.,2008,5: 175-183.
  • 9Cheri M S,Latifi H,Moghaddam M S,Shahraki H.Simulation and experimental investigation of planar micromixers with short-mixing-length [J].Chem.Eng.J.,2013,234: 247-255.
  • 10Hossain S,Husain A,Kim K Y.Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls [J].Chem.Eng.J.,2010,162: 730-737.

二级参考文献16

  • 1Atalay Y T, Witters D, Vermeir S, Vergauwe N, Verboven P, Nicolai B, Lammertyn J. Design and optimization of a double-enzyme glucose assay in microfluidic lab-on-a-chip [J]. Biomicrofluidics, 2009, 3: 044103.
  • 2Liu L, Cao W, Wu J, Wen W, Chang D C, Sheng P. Design and integration of an all in-one biomicrofluidic chip [J]. Biomicrofluidics, 2008, 2:034103.
  • 3StroockAD, DertingerSKW, AjdariA, MezicI, Stone H A, Whitesides G M. Chaotic mixer for microchannels [J]. Science, 2002, 295:647-651.
  • 4Jiang F, Drese K S, Hardt S, Kupper M, Schonfeld F. Helical flows and chaotic mixing in curved microchannels[J]. AIChEJournal, 2004, 50:2297-2305.
  • 5SchSnfeld F, Hardt S. Simulation of helical flows in microchannels [J]. AIChEJournal, 2004, 50:771-778.
  • 6Lee M G, Chois S, Park J K. Rapid laminating mixer using a contraction-expansion array microchannel [J]. Applied Physics Letters, 2009, 95:051902.
  • 7Howell P B, Mott D R, Golden J P, Ligler F S. Design and evaluation of a Dean vortex-based micromixer [J]. Lab Chip, 2004, 4:663-669.
  • 8Roger T H, Antonio J R, Hiroyuki F, Jan A S. Microsystems [M]. New York: Springer, 2002.
  • 9Li D Q. Encyclopedia of Microfluidics and Nanofluidics [M]. New York: Springer, 2008.
  • 10Hessel V, Lowe H, Schonfeld F. Micromixers a review on passive and active mixing principles [J].Chemical Engineering Science, 2005, 60:2479-2501.

共引文献10

同被引文献50

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部