期刊文献+

基于多核学习的画像画风的识别 被引量:3

Drawing Style Recognition of Facial Sketch Based on Multiple Kernel Learning
下载PDF
导出
摘要 画像的画风识别广泛应用于名画甄别和刑侦破案领域.文中提出基于多核学习的画像画风的识别算法.首先根据艺术评论家从画像部件的处理方式鉴定画像画风的方法,从画像中提取脸、左眼、右眼、鼻和嘴5个部件.然后根据画家从画像的明暗度和画像作者的绘画笔法识别画像画风的方法,从每个部件上提取灰度直方图特征、灰度矩特征、快速鲁棒特征和多尺度的局部二值模式特征.最后通过多核学习将不同部件和不同特征融合以进行画像画风的识别.实验表明,文中算法性能较好,能取得较高识别率. The drawing style recognition of facial sketches is widely used for painting authentication and criminal investigation. A drawing style recognition algorithm of facial sketch based on multiple kernel learning is presented. Firstly, according to the way of art critics recognize the drawing style of facial sketch, five parts, the face part, left eye part, right eye part, nose part and mouth part, are extracted from the facial sketch. Then, gray histogram feature, gray moment feature, speeded-up robust feature and multiscale local binary pattern feature are extracted from each part on the basis of artistsˊ different understandings of lights and shadows on a face and various usages of the pencil . Finally, different parts and features are integrated and the drawing styles of facial sketches are classified by multiple kernel learning. Experimental results demonstrate that the proposed algorithm has better performance and obtains higher recognition rates.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第9期822-827,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61501339 61172146 61125204) 中央高校基本科研业务费专项资金项目(No.JB149901) 教育部"创新团队发展计划"项目(No.IRT13088) 陕西省重点科技创新团队项目(No.2012KCT-02)资助
关键词 多核学习 部件 特征 画像 画风识别 Multiple Kernel Learning Part Feature Sketch Drawing Style Recognition
  • 相关文献

参考文献28

  • 1Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. The Annals of Statistics, 2000, 28(2) : 337-407.
  • 2Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Ver|ag, 1999.
  • 3Cutzu F, Hammoud R, Leykin A. Estimating the Photorealism of Images: Distinguishing Paintings from Photograph // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, II: 305-312.
  • 4Li J, Wang J Z. Studying Digital Imagery of Ancient Paintings by Mixtures of Stochastic Models. IEEE Trans on Image Processing, 2004, 13(3) : 340-353.
  • 5Zhang M J, Li J, Wang N N, et al. Recognition of Facial Sketch Styles. Neuroeomputing : Part C, 2015, 149 : 1188-1197.
  • 6Edwards B. The New Drawing on the Right Side of the Brain. New York, USA: Tareher, 2009.
  • 7Dodson B. Keys to Drawing. Blue Hill, USA: North Light Book, 1990.
  • 8Bay H, Tuytelaars T, Gool L V. SURF: Speeded Up Robust Fea- tures// Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006, I: 404-417.
  • 9Kennedy J, Eberhart R. Particle Swarm Optimization//Pmc of the IEEE International Conference on Neural Networks. Perth, Austra- lia, 1995, IV: 1942-1948.
  • 10Klare B F, Li Z F, Jain A K. Matching Forensic Sketches to Mug Shot Photos. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 2011, 33(3) : 639-646.

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部