期刊文献+

溶液燃烧法制备纳米Fe_2O_3/C超级电容器电极材料 被引量:1

Preparation of nano-scale Fe_2O_3/C for electrode material of super-capacitor by solution combustion method
下载PDF
导出
摘要 以硝酸铁[Fe(NO3)3·9H2O,氧化剂]、柠檬酸(C6H8O7·H2O,燃料)和硝酸铵(NH4NO3,助燃剂)为原料,在空气气氛下采用溶液燃烧法(350℃,30min)一步合成纳米Fe2O3/C复合材料。研究发现,通过改变柠檬酸的用量可以引入原位碳及改变产物中Fe2O3相的组成。运用X射线衍射(XRD)、热重(TG)、SEM和TEM技术对产物的形貌和结构进行表征,通过循环伏安和恒电流充放电测试研究了Fe2O3/C纳米复合材料的电化学性能。结果表明:Fe2O3/C产物中,Fe2O3为α-Fe2O3和γ-Fe2O3的混合相,当硝酸铁和柠檬酸的摩尔比为6∶8时,合成的产物具有较大的比表面积和孔结构,原位碳均匀分布在Fe2O3纳米颗粒的周围;在1mol/L KOH溶液中,电位窗口-1-0V(vs.SCE)时,Fe2O3/C电极表现出良好的倍率和循环特性(1000次循环后,容量保持率为80.7%),在电流密度为1A/g时,其比电容为148.4F/g。 Nanostructured Fe2O3/C composites were prepared by one-step solution combustion route (within 30 min at 350℃ in air) from Fe(NO3)3·9H2O solution (oxidizer) with citric acid (fuel) and Ammonium nitrate (combustion improver). Significantly,in-situ formed carbon could be introduced into the products (i. e. , Fe2O3/C nano-composites) and composition in the Fe2O3 phase by simply increasing the dosage of citric acid in the precursor solution. The morphology and structure characterization of samples were analyzed by X-ray diffraction(XRD), thermal gravity (TG), scanning electron microscopy (SEM) ,transmission electron microscopy (TEM). Cyclic voltammetry and galvanostatic charge/discharge were used to characterize the electrochemical performance of samples. The results showed the Fe2 Oa phase in the Fe2O3/C corn posites was composed of α-Fe2O3 and γ-Fe2O3. When the molar ratio of Fe(NO3)3·9H2O and citric acid was 6:8, the as prepared Fe2O3/C nano-composite had relatively high specific surface areas and mesopores. Besides, in-situ formed carbon was evenly distributed around Fe2O3 nanopartieles. In an electrolyte of 1mol·L^-1 KOH,it exhibited good rate capability and long-term cycling stability (kep over 80.7% of the initial specific capacitance after 1000 cycles) in the potential region of -1-0V(vs. SCE). At a current density of 1A·g^1,it had a specific capacitance of 148.4F·g^-1.
出处 《化工新型材料》 CAS CSCD 北大核心 2015年第9期48-50,共3页 New Chemical Materials
基金 国家自然科学基金(51175363和51274149) 中国博士后基金(2012M520605) 煤转化国家重点实验室开放基金(09-102) 山西省自然科学基金(2013011042-1)
关键词 溶液燃烧法 Fe2O3/C 超级电容器 solution combustion, Fe2O3/C, super-capacitor
  • 相关文献

参考文献14

  • 1刘海晶,夏永姚.混合型超级电容器的研究进展[J].化学进展,2011,23(2):595-604. 被引量:45
  • 2陈日雄,于淑会,孙蓉,赵玉宝.超级电容器用石墨烯的制备与性能研究[J].化工新型材料,2012,40(6):66-68. 被引量:6
  • 3王红强,张艳伟,李庆余,代启发,张安娜,颜志雄.淀粉还原制备纳米MnO_2超级电容器电极材料[J].化工新型材料,2009,37(2):86-88. 被引量:4
  • 4邓梅根,杨邦朝,胡永达.纳米NiO的制备及其赝电容特性研究[J].材料工程,2005,33(5):19-21. 被引量:7
  • 5Xia Xifeng, Hao Qingli, Wu Lei, et al. Nanostructured ternary composites of graphene/FezO3/polyaniline for high-perform- ance supercapacitorsEJ3. Journal of Materials Chemistry, 2012, 22(33) : 16844-16850.
  • 6Xie K,Li J,Lai Y,et al. Highly ordered iron oxide nanotube ar- rays as electrodes for electrochemical energy storage[J3. Elec- trochemistry Communications,2011,13(6) :657-660.
  • 7Peiwen L,Jianguo Y, Zhiqiang S, et al. Preparation and superca pacitive properties of Fe2Oa/active carbon nanoeomposites[J]. Chem Res Chinese University, 2012,28(5) : 780-783.
  • 8Liu Z,Tay S W,et al. Direct growth Fe203 nanorods on carbon fibers asanode materials for lithium ion batteries[J]. Materials Letters,2012,72 (0) z74-77.
  • 9Zhu Yuyang, Gong Yongchun, Ma Huaxu, et al. Fea 04 nanopar- tides embedded in carbon-framework as anode material for high performance lithium-ion batteries E J3. Eleetroehimica Acta, 2012,83(0) : 53-58.
  • 10Li Peiyang, Deng Jiaehun. One-step solution combustion synthe- sis of Fe~Oa/C nano-composites as anode materials for lithium ion batteriesEJ3. Journal of Alloys and Compounds, 2014,590 (0) ~318-323.

二级参考文献49

共引文献59

同被引文献19

  • 1Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature materials, 2008, 7(11): 845-854.
  • 2Miller J R, Simon P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889): 651- 652.
  • 3Zhao X, Johnston C, Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry, 2009, 19(46): 8755-8760.
  • 4Zhang L L, Zhao X, Stoller M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J]. Nano letters, 2012, 12(4): 1806- 1812.
  • 5Maiti U N, Lee W J, Lee J M, et al. 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices[J]. Advanced Materials, 2014, 26(1): 40-67.
  • 6Zhao J, Li H, Liu Z, et al. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt,-based trimetallic nanoparticles on pristine graphene[J]. Carbon, 2015, 87: 116-127.
  • 7Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high- performance, flexible planar supercapacitors[J]. Nano letters, 2013, 13(5): 2151-2157.
  • 8Sassin M B, Mansour A N, Pettigrew K A, et al. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage[J]. ACS Nano, 2010, 4(8): 4505-4514.
  • 9Wang H, Xu Z, Yi H, et al. One-step preparation of single- crystalline Fe20z particles/graphene composite hydrogels as high performance anode materials for supercapacitors[J].Nano Energy, 2014, 7: 86-96.
  • 10Yang P, Ding Y, Lin Z, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe203 nanotubes[J]. Nano letters, 2014, 14(2): 731-736.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部