期刊文献+

基于ZnFe_2O_4纳米材料的低温型H_2S气敏元件的设计与实现 被引量:11

Design and Fabrication of H_2S Gas Sensor at Low Temperature Based on ZnFe_2O_4 Nanocrystalline
下载PDF
导出
摘要 以无机盐为原料,液相合成了ZnFe2O4纳米粉体,通过XRD,TEM等手段对粉体的晶体结构、形貌等进行表征并研制了厚膜型气敏元件。结果表明:产物为尖晶石结构,粒径尺寸分布为10 nm^30 nm,平均粒径约为14 nm。在40℃~400℃的温度范围内,采用静态配气法测定元件的气敏性能,发现ZnFe2O4气敏元件在150℃的工作温度下对体积比浓度为1×10-3(V/V0)、1×10-4(V/V0)的H2S气体的灵敏度分别高达244.34和83.31;在此工作温度下对1×10-4(V/V0)的H2S气体响应时间2 s,恢复时间为5 s。在40℃对1×10-3(V/V0)的H2S气体的灵敏度达到111.00。 ZnFe2o4 nanocrystalline has been prepared from Zn(NO3)2·6H2O and Fe(NO3)3·9H2O by solution method for preparation of thick film gas sensor.The crystal structure and particle size of the samples are characterized by XRD and TEM. The results show that the powder of ZnFe2O4 is Spinel-type, and the mean grain size of the powder is about 14 nm in a range of 10 nm-30 nm. The gas sensing properties of the materials are tested in static slate at temperatures ranging from 40 to 400℃, revealing that the sensitivity of sensor to 1 ×10^-3(V/Vo) and 1 ×10^-4(V/Vo)H2S can reach 244.34 and 83.31 at working temperature of 150 ℃. At the optimum working temperature, its response and recovery time are 2 and 5 s. It has a high sensitivity of 111.00 when exposed to 1 ×10^-3(V/Vo) H2S at lower working temperature of 40 ℃.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第9期1288-1291,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(21265020)
关键词 H2S气体 气敏性能 ZnFe2O4纳米粉体 低温 H2S gas sensing properties ZnFe2O4 low temperature
  • 相关文献

参考文献22

二级参考文献156

共引文献2102

同被引文献112

  • 1林贺,范新会,于灵敏,严文.紫光激发对CeO_2掺杂ZnO纳米线气敏性能的影响[J].铸造技术,2009,30(3):412-415. 被引量:2
  • 2王金忠,吴家琨,王新强,孙良彦,杜国同,李康.广谱性CO气敏元件的研制[J].传感技术学报,2002,15(2):144-146. 被引量:2
  • 3张贵银,张连水,孙博,韩晓峰.NO_2分子在440~495nm范围内的激光诱导荧光激发谱[J].光谱学与光谱分析,2005,25(6):854-856. 被引量:4
  • 4王献群,刘瑞泉,朱丽琴,宫建伟.碱性介质中BIT,BIOHT和BIMMT对铜的缓蚀性能和吸附行为[J].物理化学学报,2007,23(1):21-26. 被引量:38
  • 5YOO S G,KIM J H,KIM U H,et al.Comparison of the kinetic behaviors ofα-Fe2O3spherical submicron clusters andα-Fe2O3fine powder catalysts for CO oxidation[J].Bulletin of the Korean Chemical Society,2014,35(5):1379-1384.
  • 6AHMED K A M.Formationα-Fe2O3nanowalls through solvent-assisted hydrothermal process and their application for titan yellow GR dye degradation[J].Journal of the Korean Chemical Society,2014,58(2):205-209.
  • 7KUMAR P,RAWAT N,HANG D R,et al.Controlling band gap and refractive index in dopant-freeα-Fe2O3Films[J].Electronic Materials Letters,2015,11(1):13023.
  • 8SOOK K I.Effects of hydrophilic and hydrophobic surface properties of poly(imide)films on particle adhesion and removal[J].Textile Science and Engineering,2015,52(4):232-241.
  • 9BOUMAZA S,BOUDJEMAA A,BOUGUELIA A,et al.Semiconductor-based photocatalytic hydrogen generation[J].Applied Energy,2010,87(10):2230-2236.
  • 10YUAN Z H,ZHANG L D.Synthesis,characterization,and photocatalytic activity of Zn Fe2O4/Ti O2nanocomposite[J].Journal of Materials Chemistry,2001,11(8):1265-1268.

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部