摘要
丢番图方程x^3+64=3y^2的整数解至今未解决,利用奇偶数的性质、同余的性质等证明了丢番图方程x^3+64=3y^2仅有整数解(x,y)=(-4,0).
The integer solutions of the Diophantine equation x^3 +64= 3y^2 still remains unresolved. In this paper, we prove that the Diophantine Equation x^3+64 = 3y^2 has only integer solution (x,y)= (-4,0) with the help of the natures of odd number, even number and congruence.
出处
《湖北民族学院学报(自然科学版)》
CAS
2015年第3期266-267,共2页
Journal of Hubei Minzu University(Natural Science Edition)
基金
云南省教育厅科学研究基金项目(2014Y462)
关键词
整数解
丢番图方程
同余
integer solution
Diophantine equation
congruence