期刊文献+

基于迭代线性约束最小方差的稳健自适应脉冲压缩方法 被引量:7

Robust Adaptive Pulse Compression Algorithm Based on Reiterative Linearly Constrained Minimum Variance
下载PDF
导出
摘要 针对常规自适应脉冲压缩方法在目标散射点与采样中心失配时旁瓣抑制性能下降的问题,该文提出一种基于迭代线性约束最小方差(RLCMV)的自适应脉冲压缩方法。该方法首先将自适应波束形成器算法引入到自适应脉冲压缩滤波器设计中。其次对目标及干扰单元进行线性约束,并用对角加载技术避免矩阵出现病态。最后构造了迭代运算方法,依次抑制不同大小目标的距离旁瓣。仿真结果表明,该算法可以有效抑制散射点随机分布目标的距离旁瓣,对散射点与采样中心失配情况具有较好的稳健性,在多目标及距离扩展目标场景中达到较好的旁瓣抑制性能,并在一定程度上提高了多普勒容性。 In order to solve the problem of range side-lobes suppression performance degradation due to error between scatter and sample center of tradition methods, a new adaptive pulse compression algorithm based on Reiterative Linearly Constrained Minimum Variance(RLCMV) is presented in this paper. Firstly, adaptive beamformer is introduced into adaptive pulse compression. Then, linearly constraint is forced on range bins of target and interference, and diagonal loading techniques are applied. Finally, reiterative method is presented to suppress the side-lobe of target in range of different Radar Cross Section(RCS). Simulation results show that this algorithm can effectively suppress side-lobes of scatters random distributed in range bin, and it is robust to error between scatters and sample center. It keeps excellent performance even in multi-targets and rangeextended target scenario, and improves performance of high Doppler target to a certain extend.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2300-2306,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61002045 61179017 61102167) 山东省自然科学基金(2015ZRA06052)~~
关键词 雷达信号处理 脉冲压缩 旁瓣抑制 线性约束 多普勒容性 Radar signal processing Pulse compression Side-lobes suppression Linear constrain Doppler performance
  • 相关文献

参考文献19

  • 1Richards M A. Fundamentals of Radar Signal Processing[M]. New York: The McGraw-Hill Companies, 2005: 230-231.
  • 2李风从,赵宜楠,乔晓林.抑制特定区间距离旁瓣的恒模波形设计方法[J].电子与信息学报,2013,35(3):532-536. 被引量:20
  • 3赵宜楠,张涛,李风从,周志权.基于交替投影的MIMO雷达最优波形设计[J].电子与信息学报,2014,36(6):1368-1373. 被引量:14
  • 4赵宜楠,李风从,王军,乔晓林.基于秩亏傅里叶变换的交替投影编码波形设计[J].电子学报,2014,42(6):1216-1219. 被引量:8
  • 5Cao Si-yang, Zheng : F, and Ewing R L. Wavelet:based waveform for effective sidelobe suppression in radar signal[J] IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 265-284.
  • 6Hai D. Effective CLEAN algorithms for performance enhanced detection of binary coding radar signals[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 72-78.
  • 7Blunt S D and Gerlach K. Adaptive pulse compression via MMSE Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 572-584.
  • 8Gerlach K and Blunt S D. Radar pulse compression repair[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1188-1195.
  • 9Blunt S D, Shackelford A K, and Gerlach K. Doppler compensation & single pulse imaging using adaptive pulse compression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 647-658.
  • 10Gerlach K and Blunt S D. Multistatic adaptive pulse compression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 891-903.

二级参考文献60

  • 1Zrnic B and Zejak A. Range sidelobe suppression for pulse compression radars utilizing modified RLS algorithm. Proc. IEEE Spread Specturm Techniques and Applications, South Africa, 1998, 3: 1008-1011.
  • 2Sato R and Shinrhu M. Simple mismatched filter for binary pulse compression code with small PSL and small S/N loss. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(2): 711-718.
  • 3Hal D. Effective CLEAN algorithms for performanceenhanced detection of binary coding radar signals. IEEE Trans. on Signal Processing, 2004, 52(1): 72-78.
  • 4Bose R, Freedman A, and Steinberg B D. Sequence CLEAN: A modified deconvolution technique for microwave imaging of contiguous targets. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(1): 89-97.
  • 5Shackelford A K, Gram D J, Talapatra S, and Shannon D B. Adaptive pulse compression: Preliminary experimental measurements. IEEE radar conference, Massachusetts USA, 2007: 234-237.
  • 6Blunt S D and Gerlach K. Adaptive pulse compression via MMSE Estimation. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(2): 572-584.
  • 7Shannon D B and Karl G. A generalized formulation for adaptive pulse compression of multi-static radar. IEEE Sensor array and multichannel signal processing, Massachusetts USA, 2006: 349-353.
  • 8Shannon D B and Karl G. Multi-static adaptive pulse compression. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(3): 891-903.
  • 9Blunt S D and Gerlach K. Adaptive Pulse Compression. IEEE Radar Conference, Pennsylvania USA, 2004: 271-276.
  • 10De Maio A, Huang Yong-wei, Piezzo M, et al.. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683-2697.

共引文献47

同被引文献38

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部