期刊文献+

一种图像分割的快速不动点算法 被引量:1

Fast Fixed-point Algorithm for Image Segmentation
下载PDF
导出
摘要 该文在去除背景便能获得目标的分割思想之上,提出了一个凸的无约束最小化问题。证明了问题提出过程中添加惩罚项的合理性,并通过实验验证了证明结果。在最小化求解方面,应用次微分和近似算子的相关理论,构造了求解的不动点算子,进而结合Opial a-averaged定理,给出了求解所提凸优化问题的不动点算法,并理论推导出了收敛条件,证明了算法的收敛性。与经典文献方法的对比实验表明所提方法分割结果更精确。同时实验显示该文算法比梯度下降法和分裂Bregman方法更快速。另外,所提算法对初始曲线和噪声有较好的鲁棒性。 Based on the idea that objects in a given image can be segmented by removing the background part, an unconstrained convex minimization problem is proposed. The penalization term added in the construction procedure of the proposed problem is proven to be viable, which is demonstrated by the experiment. At the computational level, a fixed-point operator and the corresponding algorithm are proposed by applying the theory of subdifferential and proximity operators, and Opial α-averaged theorem. And then the convergence proof of the algorithm is given. Comparisons with other classical models show that the proposed segmentation model is more accurate. And the experiments also demonstrate that the fixed-point algorithm is faster than the gradient descent method and the split Bregman method. Moreover, the algorithm is robust to the initial curve and noise.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2390-2396,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(11172314)~~
关键词 图像处理 图像分割 凸优化问题 不动点算法 Image processing Image segmentation Convex optimization Fixed-point algorithm
  • 相关文献

参考文献16

  • 1Zhu W, Tai X, and Chan T. Image segmentation using Euler's Elastica as the regulavization[J]. Journal o] Scientific Computing, 2013, 15(2): 414-438.
  • 2Yuan J, Bae E, Tai X, et al: A spatially continuous max-flow and min-cut framework for binary labeling problems[J]. Numerische Mathmatik, 2014, 126(3): 559-587.
  • 3张泽均,水鹏朗.一种新的基于网格编码和区域合并的SAR图像快速分割算法[J].电子与信息学报,2014,36(4):974-980. 被引量:1
  • 4赵雪梅,李玉,赵泉华.结合高斯回归模型和隐马尔可夫随机场的模糊聚类图像分割[J].电子与信息学报,2014,36(11):2730-2736. 被引量:27
  • 5李伟斌,高二,宋松和.一种全局最小化的图像分割方法[J].电子与信息学报,2013,35(4):791-796. 被引量:12
  • 6Li Wei-bin, Song Song-he, and Luo Feng. Fast imagesegmentation by convex minimisation and split Bregman method[J]. Electronics Letters, 2013, 49(17): 1073-1074.
  • 7Goldstein T and Osher S. The split Bregman method for 1 regularized problems[J]. SIAM Journal on Imaging Sciences, 2008, 2(2): 323-343.
  • 8MiccheUi C, Shen L, and Xu Y. Proximity algorithms for image models: denosing[J]. Inverse Problems, 2011, 27(4): 45009-45038.
  • 9Osher S and Fedkiw R. Level Sset Methods and Dynamic Implicit Surfaces[M]. New York: Springer Verlag, 2002: 4-22.
  • 10Bertsekas D. Nonlinear Programming[M]. Belmont: Athena Scientific, 2003: 209-210.

二级参考文献32

  • 1Vese L A and Chan T F. A multiphase level set framework for image segmentation using the Mumford-Shah model[J]. International Journal of Computer Vision, 2002, 50(3): 271- 293.
  • 2Chan T F and Vese L A. Active contours without edges[J]. [EEE Transactions on Image Processing, 2001, 10(2): 266 -277.
  • 3Tao Wen-bing and Tai Xue-cheng. Multiple piecewise constant with geodesic active contours (MPC-GAC) framework for interactive image segmentation using graph cut optimization[J]. Image and Vision Computing, 2011, 29(8): 499- 508.
  • 4Chung G and Vese L A. Image segmentation using a multilayer level set approach[J]. Computing and Visualization in Science, 2009, 12(6): 267-285.
  • 5Jeon M, Alexander M, Pedrycz W, et al.. Unsupervised hierarchical image segmentation with level set and additive operator splitting[J]. Pattern Recognition Letters, 2005, 26(10): 1461-1469.
  • 6Yang Yun-yun and Wu Bo-ying. Split Bregmnn method for minimization of improved active contour model combining local and global information dynamically[J]. Journal of Mathematical Analysis and Applications, 2012, 389(1): 351-366.
  • 7Yang Yun-yun and Wu Bo-ying. Convex image segmentation model based on local and global intensity fitting energy and split Bregman method[J]. Journal of Applied Mathematics, 2012, DOI: 10.1155/2012/692589.
  • 8Gu Ying, Wang Li-lian, and Tai Xue-cheng. A direct approach toward global minimization for multiphase labeling and segmentation problems[J]. IEEE Transactions on Image Processing, 2012, 21(5): 2399-2411.
  • 9Chan T, Esedoglu S, and Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models[J]. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632-1648.
  • 10Bresson X, Esedoglu S, Vandergheynst P, et al.. Fast global minimization of the active contour/snake models[JI. Journal ofMathematical Imaging and Vision, 2007, 28(2): 151-167.

共引文献35

同被引文献7

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部