期刊文献+

基于变窄点温差法的有机朗肯循环工质热物性与循环性能的研究 被引量:1

Research on Thermal Physical Property and Cycle Performance of Organic Rankine Cycle Based on Variable Pinch Point Temperature Difference
下载PDF
导出
摘要 对基于有机朗肯循环的车用汽油机余热能回收利用系统进行了研究。根据试验所采用的蒸发器在MATLAB中建立了循环系统模型,采用变窄点温差的方法,计算分析了28种工质在不同蒸发压力下热物性与循环性能的关系。结果表明:工质的窄点温差随工质蒸发压力变化而变化,在蒸发压力从0.5MPa升至2.5MPa过程中,窄点温差变化均接近30℃,需要在变窄点温差的基础上比较工质热物性与循环性能的关系;临界温度越高的工质其循环效率相对越低;在不同的蒸发压力下,均存在蒸发温度与临界温度之比的最优区间,在此区间内的工质循环效率最高,且该区间随压力的升高而右移;在所给定的入口条件下,湿工质的循环功率最高,等熵工质其次,干工质输出功率最小。 Exhaust energy recovery (EER) from a light-duty gasoline engine based on organic Rankine cycle system was investigated. A circulation system model was established in MATLAB based on a heat exchanger used for the investigation. With variable pinch point temperature difference (PPTD), the relationship of thermal physical property and cycle performance of 28 working fluids was calculated and analyzed. The results show that the PPTD changes with different evaporation pressures. With the pressure changing from 0.5 to 3.5 MPa, the PPTD varies by nearly 30℃. Therefore the PPTD change should be considered in the calculation. Relatively, the fluid with a higher critical temperature has a lower cycling efficiency. A region of optimal ratio of evaporation temperature and critical temperature exists in which the fluids have higher efficiencies than other regions, and it moves towards right with the increase of evaporation pressure. Wet fluids have the highest power output followed by isentropic fluids, and dry fluids produce the lowest one under given conditions.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2015年第5期30-35,共6页 Chinese Internal Combustion Engine Engineering
基金 国家"九七三"重点基础研究发展计划项目(2011CB707201)
关键词 内燃机 汽油机 排气余热回收 有机朗肯循环 窄点温差 临界温度 工质筛选 IC engine gasoline engine exhaust energy recovery (EER) organicRankine cycle pinch point temperature difference(PPTD) criticaltemperature working fluid screen
  • 相关文献

参考文献11

  • 1Chammas R E, Clodie D. Combined cycle for hybrid vehicles [C]//SAE 2005-01-1171,2005.
  • 2Wang T Y, Zhang Y J, Peng Z J, et al. A review of researches on thermal exhaust heat recovery with Rankine cycle [J]. Renewable and Sustainable Energy Reviews, 2011, 15: 2862-2871.
  • 3Tian H, Shu G Q, Wei H Q, et al. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE)[J].Energy, 2012,47:125-136.
  • 4Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007,32 : 1210-1221.
  • 5Li W, Feng X, Yu L J, et al. Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle[J]. Applied Thermal Engineering,2011,31:4014-4023.
  • 6Vaja I, Gambarotta A. Internal combustion engine (ICE) bottoming with organic rankine cycles (ORCs)[J]. Energy, 2010,35 : 1084-1093.
  • 7Liu B T, Chien K, Wang C. Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy, 2004, 29: 1207-1217.
  • 8Isam H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle[J]. Renewable Energy, 2011,36 : 1196-1202.
  • 9Wang J L, Zhao L,Wang X D. A coMParative study of pure and zeotropic mixtures in low temperature solar Rankine cycle[J]. Applied Energy, 2010,87: 3366-3373.
  • 10Klimenko V V. A generalized correlation for two-phase forced flow heat transfer[C]. International Journal of Heat and Mass Transfer, 1988,31:541-552.

同被引文献10

  • 1WANG J F, YAN Z Q, ZHAO P, et al. Off-design performance analysis of a solar-powered organic Rankine cycle [J]. Energy Conversion and Management, 2014,80 : 150-157.
  • 2YU G P, SHU G Q, TIAN H, et al. Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE)[J]. Energy,2013,51(1) :281-290.
  • 3URIS M, LINARES J I, ARENAS, E. Teehno-eeonomic feasibility assessment of a biomass cogeneration plant based on an organic rankine cycle [J]. Renewable Energy, 2014, 66: 707-713.
  • 4QIU G Q, Y Y J, LI J X, et al. Experimental investigation of biomass-fired ORC-hased micro-CHP for domestic applieations[J]. Fuel, 2012,96 : 374- 382.
  • 5DECLAYE S, QUOILIN S, GUILLAUME L, et al.Experimental study on an open-drive scroll expander integrated into an ORC (organic Rankine cycle) system with R245fa as working fluid[J]. Energy,2013,55(15) : 173-183.
  • 6KANG S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid [J]. Energy,2012,41(1):514-524.
  • 7OAO H, LIU C, HE C, et al. Performance analysis and working fluid selection of a supercritical organic rankine cycle for low grade waste heat recovery[J]. Energies, 2012, 5: 3233-3247.
  • 8LIU C, HE C, GAO H, et al. The optimal evaporation temperature of subcritical ORC based on second law efficiency for waste heat recovery [J].Entropy, 2012,14:491-504.
  • 9WANG W, WU Y T, MAC F, et al. Experimental study on the performance of single screw expanders by gap adjustment [J]. Energy,2013,62(1) :379-384.
  • 10HE W, WU Y T, PENG Y H, et al. Influence of intake pressure on the performance of single screw expander working with compressed air [J]. Applied Thermal Engineering, 2013, 51(1/2) :662-669.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部