期刊文献+

Bernstein多项式求一类变分数阶微分方程数值解 被引量:4

Numerical solution for a class of variable order fractional differential equation with Bernstein polynomials
下载PDF
导出
摘要 为求变分数阶微分方程的数值解,应用Bernstein多项式求解一类线性、非线性变分数阶微分方程.结合Bernstein多项式,求得3种不同类型的微分算子矩阵.通过微分算子矩阵,将原方程转化一系列矩阵的乘积.最后离散变量,将矩阵的乘积转化为该线性或者非线性方程组,通过求解方程组,从而得到数值解.数值算例验证了本方法的高度可行性和准确性. In order to use Bemstein polynomials to seek the numerical solution of a class of linear including nonlinear variable order fractional differential equation, this paper derives three different kinds of operational matrixes with Bemstein polynomials. The initial equation is transformed into the products of several dependent matrixes which can also be regarded as the system of linear or nonlinear equations after dispersing the variable. By solving the system of equations, the numerical solutions are acquired. Numerical examples are provided to show that the method is computationally efficient and accurate.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2015年第8期983-988,共6页 Journal of Liaoning Technical University (Natural Science)
基金 河北省自然科学基金项目(A2012203047) 秦皇岛市科学技术与研究计划项目(201201B019) 秦皇岛市科技局2013科学技术研究与发展计划项目(201302A023)
关键词 变分数阶微分方程 BERNSTEIN多项式 算子矩阵 数值解 绝对误差 Bemstein polynomials the variable order fractional differential equation numerical solution theabsolute error
  • 相关文献

参考文献12

  • 1Samko S GFractional integration and differentiation of variable order [J].Analysis Math,1995(21):213-236.
  • 2Coimbra C F M.Mechanics with variable-order differential operators [J].Annals of Physics,2003,12(11-12):692-703.
  • 3Samko S QRoss B.Intergation and differentiation to a variable fractional order[J].Integral Trans and Special Func.1993,1(4):277-300.
  • 4Lorenzo C F,Hartley T T.Initialization,conceptualization,and eplication in the generalized fractional ca!culus[M].Washington:NASA Technical Publication,1998.
  • 5Lorenzo C F,Hartley T T.Variable order and distributed order fractional operators[J].Nonlinear Dynam,2002(29):57-98.
  • 6尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 7陈一鸣,孙慧,刘丽丽,孙璐.Legendre小波在非线性分数阶微分方程中的应用[J].辽宁工程技术大学学报(自然科学版),2013,32(4):573-576. 被引量:3
  • 8Chen Y M,Yi M X5Chen C,Yu C X.Bernstein polynomials method for fractional convection-diffusion equation with variable coefficients [J].Computer Modeling in Engineering & Sciences,2012,83(6):639-653.
  • 9Maleknejad K,Hashemizadeh E,Basirat B.Computational method based on Bernstein operational matrices for nonlinear Volterra- Fredholm-Hammerstein integral equations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(1):52-61.
  • 10Yousefi S A,Behroozifar M.Operational matrices of Bernstein polynomials and their applications[J].International Journal Systems Science,2010,41(6):709-716.

二级参考文献24

  • 1陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 2Li Bicheng,Luo Jianshu.Wavelet analysis and its application[M]. Beijing Electronics industry,2005.
  • 3Gorenflo R, Mainardi F, Moretti D. Time fractional diffusion:a discrete random walk approach[J]. Journal of Nonlinear Dynamics,2000,29(3): 129-143.
  • 4Huang F,Liu F. The fundamental solution of the space- time fractional advection disersion equation[J].J Appl.Math & Computing, 2005,18(2): 339-350.
  • 5Podlubny I. Fractional differential equations[M].San Diego: Academic Press, 1999.
  • 6Razzaghi M,Yousefi S. Legendre wavelets method for the nonlinear Volterra Fredholm integral equations[J].Math.Comput.Simul.,2005(70): 1-8.
  • 7Yousefi S. Numerical solution of Abel's integral equations by using Legendre wavelets[J].Applied Mathematics and Computation, 2006(175): 574-580.
  • 8Yin Jianhua,Ren Jianya. Legendre wavelet method for solving nonlinear Fredholm iutegro-differential equations of fractional order[J].Journal of Liaoning Technical University: Natural Science,2012,31 (3):405-408.
  • 9Maleknejad K, Sohrabi S. Numerical solution of Fredholm integral equations of the lust kind by using Legendre wavelets[J].Jinst.Math. Appl.,2007(186): 836-843.
  • 10Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J].Appl math Comput,2006,13(7): 176-186.

共引文献22

同被引文献7

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部