摘要
为解决具有单个供应商和多个零售商的二级供应链的Stackelberg-Nash-Cournot均衡点的存在性,首先建立了一个具有单个领导者和多个跟随者的非合作博弈模型,利用KyFan不等式定理得到了它的StackelbergNash-Cournot均衡点的存在性.在二级供应链问题中,供应商有优先决策的权力而零售商则针对供应商的决策做出回应,经过分析得出此非合作博弈模型适用于单个供应商和多个零售商的二级供应链模型,从而可以利用已有的结果获得此二级供应链模型的Stackelberg-Nash-Cournot均衡点的存在性.
In order to deal with the existence of Stackelberg- Nash-Coumot equilibria for two-tier supply chains with a single manufacturer and multiple retailers, this paper first established a noncooperative game model with a single leader and multiple followers. Furthermore, the existence of equilibria for this noncooperative game model was obtained by using KyFan's equality theorem. In a two-tier supply chains, a single manufacturer play best responses to the actions selected by all retailers, and all retailers anticipates the best response selections of the manufacturer. Thus the noncooperative game model is applicable to two-tier supply chains with a single manufacturer and multiple retailers and this paper obtained the existence of Stackelberg- Nash-Coumot equilibria for two-tier supply chains with a single manufacturer and multiple retailers by using the above results.
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2015年第9期1089-1092,共4页
Journal of Liaoning Technical University (Natural Science)
基金
国家自然科学基金项目(11161008)
贵州省科学技术基金项目(20122289)
贵州省科学技术基金项目(20132235)