期刊文献+

电阻率层析成像的二维改进粒子群优化算法反演 被引量:5

2-D Improved particle swarm optimization algorithm for electrical resistance tomography inversion
下载PDF
导出
摘要 粒子群优化算法(PSO)是通过模拟鸟群觅食过程中的社会行为而提出的一种基于群体智能的全局随机搜索算法,已有研究学者证明PSO算法是一种有效的地球物理反演方法,不依赖初始模型。此次在研究常规粒子群算法的基础上,针对常规粒子群优化算法易于陷于局部极值,后期收敛速度慢,反演精度不高等缺点,提出了一种改进的充分混沌振荡粒子群优化算法。针对粒子群算法的特点,改进速度更新公式,使粒子更快获取与当前全局最好位置的差异,增强粒子的学习能力,并用此算法在matlab2012b编程环境中对均匀半空间电阻率层析成像异常体理论模型进行了二维数值试验。结果表明,此种算法反演时不依赖初始模型,搜索空间增大,实现全局搜索,在准确性上优于标准PSO反演,成像质量优于Levenberg-Marquardt法反演。 Particle swarm optimization ( PSO) is a global random search algorithm put forward by simulating the flock foraging in the process of social behavior based on swarm intelligence. Researchers have proved that PSO algorithm is an effective geophysical inversion method, and it does not rely on the initial model. Because the conventional PSO is easy to be stuck in relative extremum, slow convergence speed in the late and the inversion accuracy is not high, this paper presented an improved fully chaotic oscillations particle swarm optimization algorithm based on same conventional PSO theory. It improved the formula of updating speed, made the particles getting the difference between the current global best position quickly, enhanced the learning ability of particles. The paper did a twodimensional numerical test on ERT data in matlab2012b programming environment,the results show that this algorithm inversion is not dependent on the initial model, increases the search space,and have higher inversion in accuracy than the standard PSO, and the image quality is better than that of LevenbergMarquardt method.
出处 《物探与化探》 CAS CSCD 2015年第5期1047-1052,共6页 Geophysical and Geochemical Exploration
关键词 电阻率层析成像 二维反演 粒子群优化 混沌序列 非线性 electrical resistance tomography( ERT) 2d inversion particle swarm optimization chaotic sequence nonlinearity
  • 相关文献

参考文献21

  • 1Shima H, Sakayama T. Resistivity tomography: An approach to 2D resistivity inverse problem[ C]//Expanded Abstracts of 57th SEG Annual Meeting. New Orleans: Society of Exploration Geophysi- cisls, 1987:59 - 61.
  • 2Shima H.2D and 3D resistivity image re, construction using erosshole data[J]. Geophysics,1992,57(10):1270 -1281.
  • 3Loke M H.Barker R D.Leastsquares deconvolution of apparent re- sistivity pseudosections [ J ]. Geophysics, 1995, 60 (6) : 1682 - 1689.
  • 4Zohdy A R, A new method for the automatic interpretation of Schlumbeger and Wenner sounding curves[ J ]. Geophysics, 1989, 54(2) : 245 -253.
  • 5Lesur V, Cuer M, Straub A. 2D anti 3D interpretation of electrical tomography measurements. Part 2 : The invet,'se problem [ J ]. Geo- physics, 1999, 64 ( 2 ) : 396 - 402.
  • 6徐海浪,吴小平.电阻率二维神经网络反演[J].地球物理学报,2006,49(2):584-589. 被引量:73
  • 7卢元林,王兴泰,王若,孙仁国,王劲松.电阻率成像反演中的模拟退火方法[J].地球物理学报,1999,42(S1):225-233. 被引量:10
  • 8Madan K J, Kumar S, Chowdhuly A.Vertical electrical sounding survey and resistivity inversion using genetie algorithm optimization technique [ J].Journal of Hydrology,2008,359( 1 ) :71- 87.
  • 9FERNANDEZ A J P,FERNANDEZ M J I,,MENENDEZ P C O. Feasibility analysis of the use of binary genetic algorithms as im- portance samplers application to a tD DC resistivity inverse problem [ J ]. Mathematical Geosciences,2008,40(4) : 375 -408.
  • 10LIU B, LI S C, NIE L C. 3D resistivity inversion using an im- proved genetic algorithm based on control method of mutation di- rection [ J ]. Journal of Applied Geophysics, 2012, 87 : 101.

二级参考文献66

共引文献110

同被引文献54

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部