期刊文献+

应用3D打印熔融沉积技术制作个性化种植修复体的精确度研究 被引量:15

3D printing personalized implant manufactured via fused deposition modeling: an accuracy research
下载PDF
导出
摘要 目的应用3D打印熔融沉积(FDM)技术制作个性化种植修复体,评估其与天然牙的误差。方法通过Mimics 15.0软件提取锥形束CT(CBCT)扫描的6颗因正畸减数而需拔除牙(体内牙)的数据模型并制作个性化种植修复体。在相同参数下重新扫描拔除后的正畸减数牙(体外牙)及个性化种植修复体获取数据模型,利用Geomagic studio软件比较3种数据模型之间的三维偏差大小。结果个性化种植修复体与体内牙数据模型整体模型间的高低区域偏差的平均值为0.19 mm和-0.16 mm,体内牙与体外牙数据模型整体模型间的高低区域偏差的平均值为0.14 mm和-0.07 mm;两组数据经独立样本t检验,差异均无统计学意义(P>0.05)。结论 1)应用3D打印FDM技术制作的个性化种植修复体精密度良好。2)基于相同参数CBCT扫描数据获得的体内牙与体外牙的数据模型仍存在一定误差。 Objective The aim of this study was to determine the accuracy of personalized implant fabricated via 3D printing and fused deposition modeling technique (FDM) and to compare the results with a real tooth. Methods Six prepared extracted orthodontic teeth (in vivo) were scanned via cone beam computed tomography (CBCT) to obtain 3D data and to build the data models by using Mimics 15.0 software. The extracted orthodontic teeth (in vitro) and the personalized implants designed via 3D printing and FDM were scanned via CBCT to obtain data and to build the data models at the same parameters. The 3D deviations were compared among the in vivo teeth data models, in vitro teeth data models, and printing personalized implant data models by using the Geomagic studio software. Results The average deviations of high and low areas between date models of in vivo teeth and personalized implants were 0.19 mm and -0.16 mm, respectively, and the average deviations between in vitro and in vivo teeth were 0.14 mm and -0.07 mm, respectively. The independent t test showed that no statistically significant difference was observed between the two groups (P〉0.05). Conclusion 1) The personalized dental implants were manufactured via 3D printing and FDM with a high degree of precision. 2) Errors between the data models of in vitro and in vivo teeth were observed at the same CBCT parameters.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2015年第5期509-512,共4页 West China Journal of Stomatology
基金 中国科学院西部之光人才培养计划(2014) 国家自然科学基金资助项目(51171202) 甘肃省自然科学基金资助项目(145RJZA126)
关键词 3D打印技术 熔融沉积技术 个性化种植修复体 数据模型 3D printing technique fused deposition modeling technique personalized dental implant date model
  • 相关文献

参考文献12

  • 1Leong KF, Cheah CM, Chua CK. Solid freeform fabrica- tion of three-dimensional scaffolds for engineering replace-ment tissues and organs[J]. Biomaterials, 2003, 24(13):2363- 2378.
  • 2Yeong WY, Chua CK, Leong KF, et al. Rapid prototyping in tissue engineering: challenges and potential[J]. Trends Biotechnol, 2004, 22(12):643-652.
  • 3贺超良,汤朝晖,田华雨,陈学思.3D打印技术制备生物医用高分子材料的研究进展[J].高分子学报,2013,23(6):722-732. 被引量:139
  • 4Hodosh M, Povar M, Shklar G. The dental polymer implant concept[J]. J Prosthet Dent, 1969, 22(3):371-380.
  • 5Moin DA, Hassan B, Parsa A, et al. Accuracy of preemp- tively constructed, cone beam CT-, and CAD/CAM tech- nology-based, individual root analogue implant technique: an in vitro pilot investigation[J]. Clin Oral Implants Res, 2014, 25(5):598-602.
  • 6Figliuzzi M, Mangano F, Mangano C. A novel root analo- gue dental implant using CT scan and CAD/CAM: selective laser melting technology[J]. Int J Oral MaxillofacSurg, 2012, 41(7):858-862.
  • 7胡洪成,卢松鹤,毋育伟,李箐,栾庆先,唐志辉.电子束熔融技术制作的个性化根形种植体的制作精度评价[J].口腔医学研究,2014,30(6):558-562. 被引量:10
  • 8Nainar SMM, Begum S, Ansari MNM, et al. Effect of com- patibilizers on in vitro biocompatibility of PLA-HA bios- caffold[J]. Bioinspired Biomimetic Nanobiomaterials, 2014, 3(4):208-216.
  • 9Jaszkiewicz A, Bledzki AK, Franciszczak P. Improving the mechanical performance of PLA composites with natural, man-made cellulose and glass fibers-a comparison to PP counterparts[J]. Polimery, 2013, 58(6):435-442.
  • 10Goh BT, Chanchareonsook N, Tideman H, et al. The use of a polycaprolactone-tricalcium phosphate scaffold for bone regeneration of tooth socket facial wall defects and simultaneous immediate dental implant placement in Maca- cafascicularis[J]. J Biomed Mater Res A, 2014, 102(5):1379- 1388.

二级参考文献93

  • 1Leong K F, Cheah C M, Chua C K. Biomaterials,2003 ,24 :2363 - 2378.
  • 2Yeong W Y, Chua C K, Leong K F. Chanfrasekaran,Trends in Biotechnology ,2004,22:643 -652.
  • 3Seol Y J,Jang,T Y,Cho D W. Soft Matter,2012 ,8 :1730 -1735.
  • 4Melcbels F P W, Feijen J, Grijpma D W. Biomaterials,2010,31:6121 - 6130.
  • 5Zein I, Hutmacher D W,Tan K C,Teoh S H. Biomaterials,2002 ,23 :1169 - 1185.
  • 6Derby B. Science,2012,338:921 - 926.
  • 7Minns R J, Bibb R, Banks R, Sutton R A. Medical Engineering & Physics,2003,25:523 - 526.
  • 8Mahaisavariya B, Sitthseripratip K, Oris, Tongdee T. Injury Extra 2006,37 : 176 - 180.
  • 9Cooke M N, Fisher J P, Dean D, Rimnac C, Mikos A G. J Biomed Mater Res B : Appl Biomater 2002,64B :65 - 69.
  • 10Melchels F P W, Feijen J, Grijipma D W. Biomaterials,2009,30:3801 - 3809.

共引文献147

同被引文献122

引证文献15

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部