期刊文献+

Cu/TiO_2/ITO薄膜元件阻变性能与机理研究

Resistive switching behaviors and mechanism study on Cu/TiO_2/ITO element
下载PDF
导出
摘要 以磁控溅射方法沉积TiO2薄膜和Cu上电极层,制备Cu/TiO2/ITO阻变存储器元件。采用原子力显微镜、X射线衍射仪、X射线光电子能谱仪对薄膜材料进行性能表征,测试结果表明:TiO2薄膜表面平整、致密;结构以非晶为主,仅有少量金红石相TiO2(110)面结晶;钛氧比为1:1.92(at%),说明薄膜内部存在少量氧空位。在阻变性能测试中,元件呈现双极阻变现象,阻变窗口值稳定,数据保持特性良好,但未出现Forming过程。通过对阻变元件I-V曲线线性拟合结果的分析,得出阻变机理由导电细丝理论和普尔-法兰克效应共同控制。进一步分析发现,被氧化的Cu离子在偏压作用下很容易在TiO2薄膜内迁移并形成直径较大且较为稳定的导电细丝。 Magnetron sputtering was utilized to prepare Cu/TiO2/ITO resistive random access memory (RRAM); including TiO2 film and Cu top electrode layers. The film was characterized by atomic force microscopy (AFM), X-ray diffraction (XRD)and X-ray photoelectron spectroscopy(XPS). Testing results showed that the surface morphology of TiO2 film is smooth and dense, the structure of the film is mainly amorphous phase with a small amount of crystallized futile TiO2( 110)planes, and the ratio of titanium and oxide is 1:1.92 (at % )meaning there are a few oxygen vacancies in the film. Testing results of resistive switching behaviors indicated the element displayed bipolar resistive switching property, stable resistive switching window and good data retention although no Forming process existed. Through the analysis of I-V curve linear fitting results, resistive switching mechanism was detected as common controlled by conduction filament theory and Poole-Frenkel effect. It was also found that oxidized Cu ion is very easy to migrate in the TiO2 film under bias and then to form stable conducton filament with large diameter.
出处 《真空》 CAS 2015年第5期31-34,共4页 Vacuum
基金 国家大学生创新创业训练计划项目(201310386017)
关键词 TIO2薄膜 磁控溅射 双极阻变 阻变机理 TiO2 thin film, magnetron sputtering, bipolar resistive switching, resistive switching mechanism
  • 相关文献

参考文献9

  • 1Kim S, Choi S H, Park C J et al. Structural and optical characterization of Ge nanocrystals showing large nonvolatile memories in metal-oxide-semiconductor structures [J]. Journal of the Korean Physical Society, 2006, 49 ( 3 ): $548.
  • 2Waser R, Dittmann R, Staikov G et al. Redox-based resistive switching memories nanoionic mechanisms,prospects, and challenges [J]. Advanced Materials, 2009, 21: 2632-2663.
  • 3赵鸿滨,屠海令,杜军.非易失性阻变存储器研究进展[J].稀有金属,2012,36(3):491-500. 被引量:7
  • 4Meng Y, Zhang P J, Liu Z Yet al. Enhanced resistance switching stability of transparent ITOFFiO2/IT O sandwiches [J]. Chinese Physics. B, 2010, 19(3): 037304.
  • 5Senthilkumar V, Kathalingam A, Valanarasu S et al. Bipolar Resistive Switching of Solution Processed TiO2-Graphene Oxide Nanocomposite for Nonvolatile Memory Applications [J]. Physics Letters A, 2013, 377(37): 2432-2435.
  • 6王治安,王军生,童洪辉.PEM控制中频反应磁控溅射制备TiO_2薄膜的研究[J].真空,2011,48(4):76-79. 被引量:2
  • 7Lai C H, Liu C Y, Hsu C H. Effect of Firing Atmosphere and Bottom Electrode on Resistive Switching Mode on TiO2 Thin Films [J]. Thin Solid Films, 2013, 529( 1 ):430-434.
  • 8Kwon D H, Kim K M, Jang J H. Atomic Structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory[J]. Nature Nanotechnology, 2010, 5:148-153.
  • 9Yang Y C, Pan F, Zeng F et al. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From can'ier trapping/detrapping to electrochemical metallization [J]. Journal of Applied Physics, 2009, 106( 12 ): 123705.

二级参考文献79

  • 1Lei Miao, Sakae Tanemura et al. Simultaneous epitaxial growth of anatase and rutile Ti02 thin films by RF helicon magnetron sputtering [J]. Journal of CrystalGrowth, 2003, (254): 100-106.
  • 2Ohno S, Sato D, Kon Met al. Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films [J]. Thin Solid Films, 2003, (445) : 207-212.
  • 3Dangtipa S, Sripongphanb Net al. Effects of rf-power and working pressure on formation of rutile phase in rf-sputtered Ti02 thin film [J]. Ceramics International, 2008.
  • 4Szczyrbowski J eta/. Some properties of TiO2 layers prepared by medium frequency reactive sputtering [J]. Surface and Coatings Technology, 1999, (112): 261-266.
  • 5Rand Dannenberg, Phil Greene. Reactive sputter deposition of titanium dioxide [J]. Thin Solid films,2000, (360): 122-127.
  • 6Scott J F, de Argujo C A P. Ferroelectric memories [ J ]. Sci- ence, 1989, 246(4936) : 1400.
  • 7Bez R. Chaleogenide PCM: a memory technology for next dec- ade [ A]. Electron Devices Meeting (IEDM) [ C]. 2009. 89.
  • 8] Simpson R E, Krbal M, Fons P, Kolobov A V, Tominaga J, Uruga T, Tanida H. Toward the ultimate limit of phase change in Ge2Sb2Te5 [J]. Nano. Lett. , 2010, 10(2) : 414.
  • 9Kao B K F, Lee C M, Chen M J, Tsai M J, Chin T S. Ga2Te3Sbs-A candidate for fast and ultralong retention phase- change memory [J]. Adv. Mater. , 2009, 21(17) : 1695.
  • 10Zhu J G, Zheng Y, Prinz G A. Ultrahigh density vertical mag- netoresistive random access memory ( invited ) [ J ]. J. Appl. Phys. , 2000, 87(9) : 6668.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部