期刊文献+

基于贝叶斯方法与聚类的上下文感知推荐 被引量:1

Context-aware Recommendation Based on Bayes Method and Clustering
下载PDF
导出
摘要 针对如何将上下文信息融入推荐过程以提高推荐准确度问题,提出基于贝叶斯方法与聚类的新的上下文建模方法.不同于现有上下文建模方法将所有上下文看成同等重要,该方法将各上下文分别以不同的影响权重融入用户兴趣模型中.首先采用特征聚类方法对项目进行聚类,然后利用贝叶斯公式计算单个上下文条件下用户喜欢某类项目的概率,再通过复合概率公式求得多个上下文条件下用户喜欢一类项目的联合概率.最后根据喜欢同一类项目的用户之间相似度更高这一认识,将所求的联合概率融入到传统协同过滤推荐算法中以提高推荐准确度.该文采用真实电影评分数据集进行对比实验,得出的结果验证了提出方法的有效性和可靠性. To further improve the accuracy of recommendations, a new contextual modeling algorithm based on bayes method and clustering is proposed, which incorporates contextual information in recommender system. Different from the existing contextual modeling algorithm seeing all contexts as equally important, this algorithm incorporates the context respectively in different influence weight into the user interest model. This paper first cluster items using feature clustering method, and then use the bayesian formula to calculate the probability of a user liking items in a particular category with the single context conditions, so the joint probability of the user liking this kind of items with multiple context conditions is obtained. Finally, because the similarity between users those like items in same category as well should be higher,the joint probability above is incorporated into traditional collaborative filtering algorithm to improve the user similarity computing, which is beneficial to the improvement of rating prediction accuracy. Results of quantities of comparison experiments with a real world dataset demonstrate its validity and reliability.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第10期2262-2265,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(41362015)资助 江西省科技厅青年科学基金项目(20122BAB211035)资助 江西省教育厅科技项目(GJJ14431 GJJ14432 GJJ14458)资助
关键词 上下文感知推荐 贝叶斯 聚类 协同过滤 context-aware recommendation Bayes clustering collaborative filtering
  • 相关文献

参考文献6

二级参考文献70

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3Adomavicius G and Tuzhilin A. Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 4Adomavicius G, Sankaranarayanan R, Sen S, et al.. Incorporating contextual information in recommender systems using a multidimensional approach[J]. A CM Transactions on Information Systems, 2005, 23(1): 103-145.
  • 5Adomavicius G and Tuzhilin A. Context-aware Recommender Systems (Book Chapter)[M]. Recommender Systems Hand-book, New York, Dordrecht, Heidelberg, London, Springer Press, 2011: 217-253.
  • 6Zhang Yu-jie and Wang Li-cai. Some challenges for contextaware recommender systems[C]. In the 1st Workshop on Recommender System at The 5th IEEE International Conference on Computer Science & Education, Hefei, China, 2010: 362-365.
  • 7Wang Li-cai. Understanding and using contextual information in recommender systems[C]. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information, Beijing, China, 2011: 1329-1330.
  • 8Ricci F. Mobile recommender systems[J]. Journal of Information Technology and Tourism, 2011, 12(3): 205-231.
  • 9Chen Annie. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous computing environment[C]. The 1st International Workshop on Location-and Context-Awareness, Berlin, Heidelberg, Springer 2005, LNCS 3479: 244-253.
  • 10Wang Li-cai, Meng Xiang-wu, Zhang Yu-jie, et al.. New approaches to mood-based hybrid collaborative filtering[C]. In Proceedings of the Workshop on Context-Aware Movie Recommendation at the 4th ACM Conference on Recommender System, Barcelona, Spain, 2010: 28-33.

共引文献991

同被引文献2

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部