期刊文献+

基于结构相似性的协同过滤推荐算法 被引量:8

Collaborative Filtering Recommendation Algorithm Based on Structure Similarity
下载PDF
导出
摘要 评分向量的高维、稀疏,使得传统相似性度量方法的准确性较差.提出一种新的相似性计算方法—两阶段相似性计算算法.首先定义评分差异和差异确定度,得到用户偏好相似性;然后根据偏好相似性计算用户间的结构相似性,使用结构相似性对用户初始相似关系进行修正,使相似性计算结果更加合理.将本文方法应用于协同过滤推荐,在Movie Lens数据集上进行了实验.实验结果表明,与传统的相似性度量方法相比,新方法具有更高的准确性,可以显著提高协同过滤算法的推荐质量. Due to high-dimensional and sparse preference vectors, the accuracy of traditional similarity methods is low. In this paper, we propose a novel similarity method:two-phase similarity computation algorithm. Definitions of rating difference and difference certainty are given, and preference similarity is obtained. Based on the preference similarity,the structure similarity is computed. Structure similarity is used to modify the initial relationships between users, which makes the similarity computation more accurate. The proposed method is applied to collaborative filtering recommendation, experiments are carded out on the MovieLens dataset. The results show that ,compared to the traditional similarity methods, the proposed method is more accurate and can improve recommendation quality of collaborative filtering significantly.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第10期2266-2269,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71271072)资助 上海市教育委员会科研创新项目(15ZS064)资助 上海电力学院科研基金项目(K2014-037)资助
关键词 推荐系统 协同过滤 结构相似性 精确率 recommendation system collaborative filtering structure similarity precision
  • 相关文献

参考文献14

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recom- mender systems: a survey of the state-of-the-art and possible exten- sions [ J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) :734-749.
  • 2Leung C W K,Chan S C F,Chung F L. A collaborative filtering frame- work based on fuzzy association rules and multiple-level similarity [ J ]. Knowledge and Information Systems ,2006,10 (3) :357-381.
  • 3Luo H,Niu C Y,Shen R M,et al. A collaborative filtering frame- work based on both local user similarity and global user similarity J ]. Machine Learning,2008,72 (3) :231-245.
  • 4Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendationalgorithms for e-commerce [ C]. Proceedings of the 2nd ACM Con- ference on Electronic Commerce ,2000 : 158-167.
  • 5AL-SHAMRI M Y H. Power coefficient as a similarity measure for memory-based collaborative recommender systems [ J ]. Expert Sys- tems with Applications ,2014,41 ( 13 ) :5680-5688.
  • 6Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scale-based. implicit ratings for mobile music recommendations [ J]. Information Sciences ,2010,180( 11 ) :2142-2155.
  • 7Bobadilla J,Ortega F,Hemando A. A collaborative filtering similar- ity measure based on singularities [ J]. Information Processing and Management,2012,48 (2) :204-217.
  • 8Choi K, Suh Y. A new similarity function for selecting neighbors for each target item in collaborative filtering [ J ]. Knowledge-Based Systems ,2013,37 ( 1 ) : 146-153.
  • 9Symeonidis P, Nanopoulos A, Papadopoulos A N, et al. Collabora- tive recommender systems:combining effectiveness and efficiency [ J]. Expert Systems with Applications,2008,34(4) :2995-3013.
  • 10邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

二级参考文献30

  • 1张译,靳雪翔,张毅,姚丹亚.基于二分图的城市公交网络拓扑性质研究[J].系统工程理论与实践,2007,27(7):149-155. 被引量:13
  • 2~ichard O, Duda P E, Hart D G S. Pattern Classification. 2nd Edi- ion. New York, USA: John Wiley & Sons, 2001.
  • 3Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd Edition. Amsterdam, Netherlands: Elsevier, 2003.
  • 4Zhang Tian, Ramakrishnan R, Livny M. BIRCH : An Efficient Data Clustering Method for Very Large Databases // Proc of the ACM SIGMOD International Conference on Management of Data. Montre- al, Canada, 1996: 103- 114.
  • 5Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise /// Proc of the ACM SIGKDD International Conference on Management of Data. Montreal, Canada, 1996:226 - 231.
  • 6Wang Wei, Yang Jiong, Muntz R. STING: A Statistical Information Grid Approach to Spatial Data Mining// Proc of the 23rd Intema-tional Conference on Very Large Databases. Athens, Greece, 1997: 186 - 196.
  • 7Xu Linli, Neufeld J, Larson B, et al. Maximum Margin Clustering //Saul L K, Weiss Y, Bottou L, eds. Advances in Neural Informa- tion Processing Systems. Cambridge, USA: MIT Press, 2005, XVII, 1537 - 1544.
  • 8Chan P M, Schlag M D F, Zien J Y. Spectral k-Way Ratio-Cut Par- titioning and Clustering // Proc of the 30th International Design Automation Conference. Dallas, USA, 1993 : 749 - 754.
  • 9Frey B J, Dueck D. Clustering by Passing Messages between Data Points. Science, 2007, 315(5814): 972-976.
  • 10Shuai Dianxun, Dong Yumin, Shuai Qiug. A New Data Clustering Approach: Generalized Cellular Automata. Information Systems, 2007, 32(7): 968-977.

共引文献565

同被引文献77

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2徐义峰,陈春明,徐云青.一种基于分类的协同过滤算法[J].计算机系统应用,2007,16(1):47-50. 被引量:8
  • 3OZSOY M G , POLAT F . Trust based recommendation systems [ C]//WWW 2008: Proceedings of the 17th International Confer- ence on World Wide Web. New York: ACM, 2013:1267 - 1274.
  • 4SHAMBOUR Q, LU JIE. A trust-semantic fusion-based recommen- dation approach for e-business applications [ J]. Decision Support Systems, 2012, 54( 1 ) : 768 - 780.
  • 5LI Y M, WU C T, LAI C Y. A social recommender mechanism for e-commerce combining similarity, trust, and relationship[ J]. Deci- sion Support Systems, 2013, 55(3):740-752.
  • 6CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[ J]. Knowledge-Based Systems, 2013, 37(1) : 146 - 153.
  • 7BOBADILLA J, ORTEGA F, HERNANDO A. A collaborative fil- tering similarity measure based on singularities [ J]. Information Processing and Management, 2011, 48(2) : 204 - 217.
  • 8马宏伟,张光卫,李鹏.协同过滤推荐算法综述[J].小型微型计算机系统,2009,30(7):1282-1288. 被引量:203
  • 9汪静,印鉴,郑利荣,黄创光.基于共同评分和相似性权重的协同过滤推荐算法[J].计算机科学,2010,37(2):99-104. 被引量:45
  • 10黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部