期刊文献+

多目标柔性车间调度的文化基因非支配排序粒子群算法 被引量:4

Memetic Non-dominated Sorting Particle Swarm Optimization Algorithm for Solving the Multi-objective Flexible Job Shop Scheduling Problem
下载PDF
导出
摘要 本文以离散型柔性制造车间为对象,以缩短生产周期、减少机器空转时间和提高产品合格率为优化目标,提出一种文化基因非支配排序粒子群算法.该算法采用二维编码方式.首先,分别对工序和机器分配进行不同的变异操作,建立了多目标离散型资源优化调度模型.然后,采用非支配排序策略和随机游走法获得Pareto最优解,接着利用层次分析法给出资源优化配置方案.最后,利用实际生产数据进行仿真,结果表明所提出的优化算法具有平衡全局搜索能力和局部搜索能力的特性. In this paper, a memetic non-dominated sorting particle swarm optimization algorithm is proposed for the discrete flexible job shop scheduling. Shorting the production period, reducing the machine idle time and improving the product qualification rate are the algorithm's optimization objectives. This algorithm adopts two-dimensional coding method. First, a multi-objective discrete resources optimization scheduling model is established by different mutation operation for the process and the machine allocation. Then, the Pareto optimal solution is obtained using the non-dominated sorting strategy and the random walk method. Besides, using the analytic hierarchy method, the resource optimal allocation scheme is given. Finally, the actual production data is used for simulation. The result shows that the proposed optimization algorithm can balance the global search and the local exploitation abilities.
出处 《计算机系统应用》 2015年第10期155-161,共7页 Computer Systems & Applications
基金 国家高技术研究发展计划(863计划)(2014AA041505)
关键词 离散制造 智慧车间 优化调度 粒子群 非支配排序 discrete manufacturing intelligent workshop optimal scheduling particle swarm non-dominated sorting
  • 相关文献

参考文献18

  • 1李俊青,潘全科,王玉亭.多目标柔性车间调度的Pareto混合禁忌搜索算法[J].计算机集成制造系统,2010,16(7):1419-1426. 被引量:39
  • 2Zribi N, Kacem I, Kamel AE, Borne P. Assignment and scheduling in flexible job-Shops by hierarchical optimization. IEEE Trans. on Systems, Man, and Cybernetics Part C: Applications and Reviews, 2007, 37(4): 652-661.
  • 3Liouane N, Saad I, Hammadi S, Borne P. Ant systems and local search optimization for flexible job shop scheduling production. International Journal of Computers, Commtmications and Control, 2007, 2(2): 174-184.
  • 4Yuan Y, Xu H, Yang J. A hybrid harmony search algorithm for the flexible job shop scheduling problem. Applied Soft Computing, 2013, 13(7): 3259-3272.
  • 5Li JQ, Pan QK, Suganthan PN, Chua TJ. A hybrid tabu searchalgorithm with an efficient neighborhood structure for the flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2011, 52(5): 683479.
  • 6Zhang Q, Manier H, Manier MA. A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times. Computers & Operatons Research, 2012, 39(6): 1713-1716.
  • 7Kacem I, Hammadi S, Borne E Pareto-0ptimality approach for flexible job-shop scheduling problems: Hybridization of evolutionary algorithms and fuzzy logic. 2002 IEEE International Conference on Systems, Man and Cybernetics. 2002, 60. 245-276.
  • 8Zitzler E, Thiele L. Comparison of multi-objective evolutionary algorithms: empirical results. Evolutionary Computation, 2002, 8(2): 173-195.
  • 9Moslehi G, Mahnam M. A pereto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search. International Journal of Production Economics, 2011, 129 (1): 14-22.
  • 10Li J, Pan Q, Xie S. Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. International Journal of Advanced Manufacturing Technology, 2011, 55(9): 1159-1169.

二级参考文献47

共引文献148

同被引文献28

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部