期刊文献+

基于MapReduce的校园网用户网购偏好分析 被引量:1

Online Shopping Preference Analysis of Campus Network Users Based on Map Reduce
下载PDF
导出
摘要 用户网购偏好发现是用户挖掘、电商营销以及用户个性化推荐的关键,该文基于校园网流量,提出了一种基于Map Reduce的校园网用户网购偏好分析方法,结合深度包检测(Deep Packet Inspection,DPI)与网络爬虫等技术,对校园网用户网购行为进行了特征提取和识别.以淘宝、天猫、京东三家电商网站为例,对电商网站用户转化率进行了统计分析,并分别对三个节假日校园网用户网购偏好进行了细致的分析. A method for online shopping preference analysis based on MapReduce is proposed in this paper. The campus network traffic is analysed using MapReduce model, in which the features of users online shopping behavior is extracted by four MapReduce jobs combined with deep packet inspection (DPI). Making use of those features occuring in different E-commercial websites and with the help of the product information database established by a web crawler, user online shopping conversion rates of E-commercial websites and category of purchased product are analysed and preference analysis results are presented.
出处 《计算机系统应用》 2015年第10期222-226,共5页 Computer Systems & Applications
基金 重庆市应用开发计划(cstc2013yykf A40006) 2013重庆高校创新团队建设计划(KJTD201312)
关键词 Map REDUCE 深度包检测 校园网 网购偏好分析. MapReduce deep packet inspection campus network online shopping preference analysis
  • 相关文献

参考文献11

  • 1徐国虎,孙凌,许芳.基于大数据的线上线下电商用户数据挖掘研究[J].中南民族大学学报(自然科学版),2013,32(2):100-105. 被引量:61
  • 2赵洁,温润,周峰,金培权.基于Web用户日志的电子商务领域竞争对手分析——以11家电子商务网站为例[J].信息资源管理学报,2013,3(4):53-62. 被引量:4
  • 3Lee Y, Lee Y. Toward scalable intemet traffic measurement and analysis with hadood. ACM SIGCOMM Computer Communication Review, 2013, 43(1): 6-13.
  • 4Lee Y, Kang W, Son H. An internet traffic analysis method with MapReduce. 2010 IEEE/IFIP Network Operations and Management Symposium Workshops. 2010.357-361.
  • 5Lu XM, Cao WH, Huang XS, Huang F~, He LW, Yang WH, Wang SB, Zhang XT, Chen HS. A real implementation of DPI in 3G network. 2010 IEEE, Global Telecommunications Conference (GLOBECOM 2010). 2010. 1-5.
  • 6Trivedi U. A self-leaming stateful application identification method for deep packet inspection. 2012 8th International Conference on Computing Technology and Information Management (ICCM). 2012.416-421.
  • 7Rezvani M, Ignjatovic A, Bertino E, Sanjay J. Provenance- aware security risk analysis for hosts and network flows. 2014 IEEE Network Operations and Management Symposium (NOMS). 2014. 1-8.
  • 8Hadoop.http://hadoop.apache.org/.
  • 9郑力明,易平.基于HTMLParser信息提取的网络爬虫设计[J].微计算机信息,2009,25(15):123-124. 被引量:7
  • 10孙立伟,何国辉,吴礼发.网络爬虫技术的研究[J].电脑知识与技术(过刊),2010,0(15):4112-4115. 被引量:134

二级参考文献57

  • 1郑冬冬,赵朋朋,崔志明.Deep Web爬虫研究与设计[J].清华大学学报(自然科学版),2005,45(S1):1896-1902. 被引量:28
  • 2梁循.数据挖掘:建模、算法、应用和系统[J].计算机技术与发展,2006,16(1):1-4. 被引量:40
  • 3Kunpeng Zhu,Zhiming Xu,Xiaolong Wang, and Yuming Zhao.A Full Distribute Web Crawler Based on Structred Network_Lecture Notes in Computer Science.2008, 4993:478-483
  • 4Shoubin Dong,Xiaofeng Lu,Ling Zhang,and Kejing He. An Efficient Parallel Crawler in Grid Environment. Lecture Notes in Computer Science .2004, 3032:229-232
  • 5Yun Huang,Yun Ming Ye. wHunter: A Focused Web Crawler - A Tool for Digital Library. Lecture Notes in Computer Science. 2004,3334:519-522
  • 6Lefleris Kozanidis.An Ontology-Based Focused Crawler.LNCS. 2008,5039:376-379
  • 7Yong Wang, Yiqun Liu, et al. A News Page Discovery Policy for Instant Crawlers. LNCS.2008,4993:520-525
  • 8http://htmlparser.sourc e forge.net
  • 9F Menczer, G Pant, M Ruiz et al. Evaluating topic-driven web erawlers[C].In: Proc ACM SIGIR 2001,2001
  • 10孙彬,王东,李娟.基于XQuery的Deep Web搜索系统的设计与实现[J].科学技术与工程,2007,7(16):4080-4084. 被引量:2

共引文献202

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部