期刊文献+

关于半鞅的双幂变差门限版本的收敛速度(英文) 被引量:1

The Speed of Convergence of the Threshold Version of Bipower Variation for Semimartingales
下载PDF
导出
摘要 本文中,对于由标准布朗运动和纯跳Levy过程驱动的半鞅,在允许小跳有无穷活性的情况下,我们研究了其双幂变差门限版本的收敛速度. In this paper, we consider the speed of convergence of the threshold version of bipower variation for a semimartingale, which is driven by a standard Brownian motion and a pure jump Levy process with possibly infinite activity of the small jumps.
机构地区 南昌大学数学系
出处 《应用概率统计》 CSCD 北大核心 2015年第4期337-346,共10页 Chinese Journal of Applied Probability and Statistics
基金 supported by the Natural Science Foundation of Jiangxi Province(20151BAB201021)
关键词 收敛速度 双幂变差 半鞅 积分波动率 Speed of convergence, bipower variation, semimartingales, integrated volatility
  • 相关文献

参考文献7

  • 1Mancini, C., The speed of convergence of the threshold estimator of integrated variance, Stochastic Processes and Their Applications, 121(4)(2011), 845-855.
  • 2Cont, R. and Tankov, P., Financial Modelling with Jump Processes (Second Edition), London: CRC Press, 2004.
  • 3Mykland, P.A. and Zhang, L., ANOVA for diffusions and It5 processes, The Annals of Statistics, 34(4) (2006), 1931-1963.
  • 4Mancini, C., Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps, Scandinavian Journal of Statistics, 36(2)(2009), 270-296.
  • 5Vetter, M., Limit theorems for bipower variation of semimartingales, Stochastic Processes and Their Applications, 120(1)(2010), 22-38.
  • 6Cont, R. and Mancini, C., Nonparametric tests for pathwise properties of semimartingales, Bernoulli, 17(2)(2011), 781-813.
  • 7Jacod, J., Asymptotic properties of realized power variations and related functionals of semimartin- gales, Stochastic Processes and Their Applications, 118(4)(2008), 517-559.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部